|
| 1 | +# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \ |
| 2 | +# RUN: %PYTHON %s | FileCheck %s |
| 3 | + |
| 4 | + |
| 5 | +# ===--- GEMM Hopper Tensor Core Integration Test ---=== |
| 6 | +# |
| 7 | +# This test aims to validate the correctness of the supported GEMM kernels in |
| 8 | +# NVGPU dialects, with current support for Multistage and Warp Specialization |
| 9 | +# kernels. |
| 10 | +# The test constructs and metaprograms IR using Python bindings, allowing |
| 11 | +# generic IR building. This flexibility enables changes to the shape, |
| 12 | +# tile size, or data type of the GEMM for testing purposes. |
| 13 | +# The entry function is `matmul`, where one can specify GEMM shape, tile size, |
| 14 | +# data type, GEMM algorithm (Multistage or Warp Specialization), and the maximum |
| 15 | +# number of stages. |
| 16 | +# Verification is done via numpy's matmul operation. |
| 17 | +# |
| 18 | +# Example: |
| 19 | +# matmul(input_type=np.float16, # input types |
| 20 | +# output_type=np.float32, # output type |
| 21 | +# M=4096, N=4096, K=4096, # Shape |
| 22 | +# BLOCK_M=128, BLOCK_N=128, BLOCK_K=64, # Tile Size |
| 23 | +# use_warp_specialization=True, # Enable Warp Specialization |
| 24 | +# max_num_stages=3) # Number of stages in shared memory |
| 25 | +# |
| 26 | +# ===--- Parallelism Across CTAs ---=== |
| 27 | +# |
| 28 | +# GEMM includes three loops defining the shape of the GEMM, specified in the |
| 29 | +# `matmul` function. |
| 30 | +# The program builds IR using the following loop structure, tiling the loops |
| 31 | +# with the given tile size and parallelizing the two outermost loops into the |
| 32 | +# first and second dimensions of CTAs. |
| 33 | +# |
| 34 | +# for(bi = 0; i < M; i += BLOCK_M) # parallelize across blockIdx.x |
| 35 | +# for(bj = 0; j < N; j += BLOCK_N) # parallelize across blockIdx.y |
| 36 | +# for(bk = 0; k < K; K += BLOCK_K) |
| 37 | +# for(i = bi; i < (bi + BLOCK_M); ++i) |
| 38 | +# for(j = bj; j < (bj + BLOCK_N); ++j) |
| 39 | +# for(k = bk; k < (bk + BLOCK_K); ++k) |
| 40 | +# |
| 41 | +# ===--- Multistage Kernel ---=== |
| 42 | +# |
| 43 | +# This kernel launches a single warp group (128 threads). The primary thread |
| 44 | +# (pthread) requests load from TMA. Threads collectively wait for the data and |
| 45 | +# perform mma operations. After completing the shape, threads together store |
| 46 | +# first fragmented registers to shared memory, then from shared memory to global |
| 47 | +# memory; this part is called the epilogue. |
| 48 | +# |
| 49 | +# Execution Timeline of Multistage Kernel with 3 stages: |
| 50 | +# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| 51 | +# | |Prologue ----> |MainLoop ----> |Epilogue | |
| 52 | +# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| 53 | +# |pthread|[tma-0,1,2] |[wait-0][mma][tma-2]|[wait-1][mma][tma-0]|[wait-2][mma][tma-1]| ... | [mma-wait] |[epilogue]| |
| 54 | +# |wgroup | ........ |[wait-0][mma] |[wait-1][mma] |[wait-2][mma] | ... | [mma-wait] |[epilogue]| |
| 55 | +# +-------+----------------+--------------------+--------------------+--------------------+-----+-----------------------+ |
| 56 | +# |
| 57 | +# ===--- Warp Specialization Kernel ---=== |
| 58 | +# |
| 59 | +# This kernel launches 2 warp groups (2x128 threads) per CTA, specializing one |
| 60 | +# as `producer warp group` and another as `consumer warp group`. The |
| 61 | +# `producer warp group` is responsible for requesting TMA load, while the |
| 62 | +# `consumer warp group` performs the mma operation. The epilogue section is |
| 63 | +# handled by the `consumer warp group` as its threads own the fragmented registers. |
| 64 | +# |
| 65 | +# Execution Timeline of Warp Specialization Kernel with 2 stages: |
| 66 | +# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| 67 | +# | |MainLoop ----> | 1st Epilogue | 2nd Epilogue | |
| 68 | +# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| 69 | +# |pthread1|[tma-0] | [tma-1] | [tma-0] | [tma-1] | ..........................| ........... | [shmem->global] | |
| 70 | +# |wgroup1 | .......| | | | | | [shmem->global] | |
| 71 | +# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| 72 | +# |wgroup2 |[wait-0][mma], [wait-1][mma], [wait-0][mma], [wait-1][mma], ......| [reg->shmem] | [shmem->global]| |
| 73 | +# +--------+--------+---------+---------+---------+-----------------------+---+--------------+-----------------+ |
| 74 | + |
| 75 | +import errno |
| 76 | +import numpy as np |
| 77 | +import subprocess |
| 78 | +import ctypes |
| 79 | +from tools import nvgpucompiler |
| 80 | +from tools import matmulBuilder |
| 81 | +import contextlib |
| 82 | +import os |
| 83 | +import sys |
| 84 | +import pathlib |
| 85 | +import ctypes |
| 86 | +from mlir import runtime as rt |
| 87 | + |
| 88 | + |
| 89 | +def generate_matmul( |
| 90 | + input_type=np.float16, |
| 91 | + output_type=np.float32, |
| 92 | + M=4096, |
| 93 | + N=4096, |
| 94 | + K=4096, |
| 95 | + BLOCK_M=128, |
| 96 | + BLOCK_N=128, |
| 97 | + BLOCK_K=64, |
| 98 | + use_warp_specialization=True, |
| 99 | + saveIR=False, |
| 100 | + max_num_stages=3, |
| 101 | + options=f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3", |
| 102 | +): |
| 103 | + with matmulBuilder.ir.Context() as ctx, matmulBuilder.ir.Location.unknown(): |
| 104 | + if use_warp_specialization: |
| 105 | + mlir_nvgpu_module = matmulBuilder.generate_matmul_ws( |
| 106 | + input_type, |
| 107 | + output_type, |
| 108 | + M, |
| 109 | + N, |
| 110 | + K, |
| 111 | + BLOCK_M, |
| 112 | + BLOCK_N, |
| 113 | + BLOCK_K, |
| 114 | + max_num_stages, |
| 115 | + ) |
| 116 | + else: |
| 117 | + mlir_nvgpu_module = matmulBuilder.generate_matmul_multistage( |
| 118 | + input_type, |
| 119 | + output_type, |
| 120 | + M, |
| 121 | + N, |
| 122 | + K, |
| 123 | + BLOCK_M, |
| 124 | + BLOCK_N, |
| 125 | + BLOCK_K, |
| 126 | + max_num_stages, |
| 127 | + ) |
| 128 | + |
| 129 | + mlir_nvgpu_module.operation.verify() |
| 130 | + |
| 131 | + # Save generated IR |
| 132 | + if saveIR: |
| 133 | + # print(mlir_nvgpu_module) |
| 134 | + original_stdout = sys.stdout |
| 135 | + with open("gemm.mlir", "w") as f: |
| 136 | + sys.stdout = f |
| 137 | + print(mlir_nvgpu_module) |
| 138 | + sys.stdout = original_stdout |
| 139 | + |
| 140 | + # Get compiler |
| 141 | + support_lib = os.getenv("SUPPORT_LIB") |
| 142 | + if not os.path.exists(support_lib): |
| 143 | + raise FileNotFoundError( |
| 144 | + errno.ENOENT, os.strerror(errno.ENOENT), support_lib |
| 145 | + ) |
| 146 | + compiler = nvgpucompiler.NvgpuCompiler( |
| 147 | + options, opt_level=3, shared_libs=[support_lib] |
| 148 | + ) |
| 149 | + |
| 150 | + # Compile |
| 151 | + engine = compiler.compile_and_jit(mlir_nvgpu_module) |
| 152 | + return engine |
| 153 | + |
| 154 | + |
| 155 | +def matmul( |
| 156 | + input_type=np.float16, |
| 157 | + output_type=np.float32, |
| 158 | + M=128, |
| 159 | + N=128, |
| 160 | + K=128, |
| 161 | + BLOCK_M=128, |
| 162 | + BLOCK_N=128, |
| 163 | + BLOCK_K=64, |
| 164 | + use_warp_specialization=True, |
| 165 | + saveIR=False, |
| 166 | + max_num_stages=3, |
| 167 | + print_results=False, |
| 168 | + no_verify=False, |
| 169 | +): |
| 170 | + # Print the configuration |
| 171 | + required_stages = (M * K + K * N) // (BLOCK_M * BLOCK_K + BLOCK_K * BLOCK_N) |
| 172 | + num_stages = min(required_stages, max_num_stages) |
| 173 | + ity = "f16" if input_type == np.float16 else "f32" |
| 174 | + oty = "f16" if output_type == np.float16 else "f32" |
| 175 | + gemmty = "Warp specialization" if use_warp_specialization else "Multistage" |
| 176 | + print( |
| 177 | + "===-- Running GEMM " |
| 178 | + + gemmty |
| 179 | + + " " |
| 180 | + + oty |
| 181 | + + " += " |
| 182 | + + ity |
| 183 | + + " * " |
| 184 | + + ity |
| 185 | + + ", Size " |
| 186 | + + str(M) |
| 187 | + + "x" |
| 188 | + + str(N) |
| 189 | + + "x" |
| 190 | + + str(K) |
| 191 | + + ", Tile " |
| 192 | + + str(BLOCK_M) |
| 193 | + + "x" |
| 194 | + + str(BLOCK_N) |
| 195 | + + "x" |
| 196 | + + str(BLOCK_K) |
| 197 | + + ", stages " |
| 198 | + + str(num_stages) |
| 199 | + + " --===" |
| 200 | + ) |
| 201 | + |
| 202 | + # Build IR and compile |
| 203 | + engine = generate_matmul( |
| 204 | + input_type, |
| 205 | + output_type, |
| 206 | + M, |
| 207 | + N, |
| 208 | + K, |
| 209 | + BLOCK_M, |
| 210 | + BLOCK_N, |
| 211 | + BLOCK_K, |
| 212 | + use_warp_specialization, |
| 213 | + saveIR, |
| 214 | + num_stages, |
| 215 | + ) |
| 216 | + |
| 217 | + # Allocate matrices and invoke the matmul |
| 218 | + c = np.zeros((M, N), output_type) |
| 219 | + a = np.random.randn(M, K).astype(input_type) |
| 220 | + b = np.random.randn(K, N).astype(input_type) |
| 221 | + mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) |
| 222 | + mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) |
| 223 | + mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) |
| 224 | + kernelName = matmulBuilder.make_kernel_name( |
| 225 | + input_type, |
| 226 | + output_type, |
| 227 | + M, |
| 228 | + N, |
| 229 | + K, |
| 230 | + BLOCK_M, |
| 231 | + BLOCK_N, |
| 232 | + BLOCK_K, |
| 233 | + num_stages, |
| 234 | + use_warp_specialization, |
| 235 | + ) |
| 236 | + |
| 237 | + # Launch the MLIR generated kernel |
| 238 | + engine.invoke(kernelName, mem_a, mem_b, mem_c) |
| 239 | + |
| 240 | + float_formatter = "{:.2f}".format |
| 241 | + np.set_printoptions(formatter={"float_kind": float_formatter}) |
| 242 | + |
| 243 | + if print_results: |
| 244 | + print(c) |
| 245 | + |
| 246 | + # Verify the results |
| 247 | + if not no_verify: |
| 248 | + ref = a.astype(input_type) @ b.astype(input_type) |
| 249 | + if print_results: |
| 250 | + print(ref) |
| 251 | + np.testing.assert_allclose(c, ref, rtol=5e-03, atol=1e-01) |
| 252 | + |
| 253 | + print("PASS ") |
| 254 | + |
| 255 | + |
| 256 | +# Takes longer time to run |
| 257 | +def test_long(): |
| 258 | + for stages in range(1, 7): |
| 259 | + for M in [128, 512, 1024, 4096, 8192]: |
| 260 | + for N in [128, 512, 1024, 4096, 8192]: |
| 261 | + for K in [64, 128, 512, 1024, 4096, 8192]: |
| 262 | + matmul( |
| 263 | + np.float16, |
| 264 | + np.float32, |
| 265 | + M, |
| 266 | + N, |
| 267 | + K, |
| 268 | + max_num_stages=stages, |
| 269 | + use_warp_specialization=False, |
| 270 | + no_verify=True, |
| 271 | + ) |
| 272 | + matmul( |
| 273 | + np.float16, |
| 274 | + np.float32, |
| 275 | + M, |
| 276 | + N, |
| 277 | + K, |
| 278 | + max_num_stages=stages, |
| 279 | + use_warp_specialization=True, |
| 280 | + ) |
| 281 | + |
| 282 | + |
| 283 | +def test_short(): |
| 284 | + for stages in [1, 3]: |
| 285 | + for M in [128, 512]: |
| 286 | + for N in [128]: |
| 287 | + for K in [64, 256]: |
| 288 | + matmul( |
| 289 | + np.float16, |
| 290 | + np.float32, |
| 291 | + M, |
| 292 | + N, |
| 293 | + K, |
| 294 | + max_num_stages=stages, |
| 295 | + use_warp_specialization=False, |
| 296 | + ) |
| 297 | + matmul( |
| 298 | + np.float16, |
| 299 | + np.float32, |
| 300 | + M, |
| 301 | + N, |
| 302 | + K, |
| 303 | + max_num_stages=stages, |
| 304 | + use_warp_specialization=True, |
| 305 | + ) |
| 306 | + |
| 307 | + |
| 308 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| 309 | +# CHECK: PASS |
| 310 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| 311 | +# CHECK: PASS |
| 312 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 1 --=== |
| 313 | +# CHECK: PASS |
| 314 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 1 --=== |
| 315 | +# CHECK: PASS |
| 316 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 1 --=== |
| 317 | +# CHECK: PASS |
| 318 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 1 --=== |
| 319 | +# CHECK: PASS |
| 320 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 1 --=== |
| 321 | +# CHECK: PASS |
| 322 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 1 --=== |
| 323 | +# CHECK: PASS |
| 324 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| 325 | +# CHECK: PASS |
| 326 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x64, Tile 128x128x64, stages 1 --=== |
| 327 | +# CHECK: PASS |
| 328 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 3 --=== |
| 329 | +# CHECK: PASS |
| 330 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 128x128x256, Tile 128x128x64, stages 3 --=== |
| 331 | +# CHECK: PASS |
| 332 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 2 --=== |
| 333 | +# CHECK: PASS |
| 334 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x64, Tile 128x128x64, stages 2 --=== |
| 335 | +# CHECK: PASS |
| 336 | +# CHECK: ===-- Running GEMM Multistage f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 3 --=== |
| 337 | +# CHECK: PASS |
| 338 | +# CHECK: ===-- Running GEMM Warp specialization f32 += f16 * f16, Size 512x128x256, Tile 128x128x64, stages 3 --=== |
| 339 | +# CHECK: PASS |
| 340 | + |
| 341 | +test_short() |
0 commit comments