@@ -213,11 +213,11 @@ def Tensor_DimOp : Tensor_Op<"dim", [
213
213
214
214
// Return the dynamic dimension of %A.
215
215
%c1 = arith.constant 1 : index
216
- %y = tensor.dim %A, %c1 : memref <4x?xf32>
216
+ %y = tensor.dim %A, %c1 : tensor <4x?xf32>
217
217
218
218
// Equivalent generic form:
219
- %x = "tensor.dim"(%A, %c0) : (memref <4x?xf32>, index) -> index
220
- %y = "tensor.dim"(%A, %c1) : (memref <4x?xf32>, index) -> index
219
+ %x = "tensor.dim"(%A, %c0) : (tensor <4x?xf32>, index) -> index
220
+ %y = "tensor.dim"(%A, %c1) : (tensor <4x?xf32>, index) -> index
221
221
```
222
222
}];
223
223
@@ -673,7 +673,7 @@ def Tensor_GatherOp : Tensor_Op<"gather", [
673
673
674
674
At the tensor-level, the index tensor is specified in an AoS form (i.e.
675
675
coordinate tuple is the most minor). It is the responsibility of further
676
- lowerings and bufferiation to implement various concrete layouts.
676
+ lowerings and bufferization to implement various concrete layouts.
677
677
678
678
Note: As currently specified, the operation must lower to an abstraction that
679
679
performs copies to the output tensor. This is because the buffer type system
@@ -710,7 +710,7 @@ def Tensor_GatherOp : Tensor_Op<"gather", [
710
710
711
711
let extraClassDeclaration = [{
712
712
// TODO: InferTypeOpInterface once enough confidence is built with
713
- // tensor<tensor> and its lwoering to memref<memref>.
713
+ // tensor<tensor> and its lowering to memref<memref>.
714
714
static RankedTensorType inferResultType(RankedTensorType sourceType,
715
715
RankedTensorType indicesType,
716
716
ArrayRef<int64_t> gatherDims,
@@ -1673,7 +1673,7 @@ def Tensor_ScatterOp : Tensor_Op<"scatter", [
1673
1673
source tensor has size `1`.
1674
1674
I.e. if the dest type is `axbxcxd` and the coordinates are [1, 3], then
1675
1675
the source type suffix is `ax1xcx1`.
1676
- Sactter also allows rank-reducing semantics where the shape `ax1xcx1` can be
1676
+ Scatter also allows rank-reducing semantics where the shape `ax1xcx1` can be
1677
1677
further simplified to `axc`.
1678
1678
1679
1679
The elemental type of the indices tensor can be any integer type.
@@ -1693,7 +1693,7 @@ def Tensor_ScatterOp : Tensor_Op<"scatter", [
1693
1693
1694
1694
At the tensor-level, the index tensor is specified in an AoS form (i.e.
1695
1695
coordinate tuple is the most minor). It is the responsibility of further
1696
- lowerings and bufferiation to implement various concrete layouts.
1696
+ lowerings and bufferization to implement various concrete layouts.
1697
1697
1698
1698
Note: As currently specified, the operation must lower to an abstraction that
1699
1699
performs copies to the output tensor. This is because the buffer type system
@@ -2115,7 +2115,7 @@ def Tensor_UnPackOp : Tensor_RelayoutOp<"unpack"> {
2115
2115
/// Check if this UnPackOp is like a simple unpad operation.
2116
2116
/// In other words, this operation:
2117
2117
/// 1. drops useless dimensions (dimension of size 1), and
2118
- /// 2. reduces dimensions in place (i.e., no tranpose .)
2118
+ /// 2. reduces dimensions in place (i.e., no transpose .)
2119
2119
bool isLikeUnPad();
2120
2120
}];
2121
2121
0 commit comments