@@ -992,7 +992,8 @@ class LoopVectorizationCostModel {
992
992
// / If interleave count has been specified by metadata it will be returned.
993
993
// / Otherwise, the interleave count is computed and returned. VF and LoopCost
994
994
// / are the selected vectorization factor and the cost of the selected VF.
995
- unsigned selectInterleaveCount (ElementCount VF, InstructionCost LoopCost);
995
+ unsigned selectInterleaveCount (VPlan &Plan, ElementCount VF,
996
+ InstructionCost LoopCost);
996
997
997
998
// / Memory access instruction may be vectorized in more than one way.
998
999
// / Form of instruction after vectorization depends on cost.
@@ -4881,8 +4882,232 @@ void LoopVectorizationCostModel::collectElementTypesForWidening() {
4881
4882
}
4882
4883
}
4883
4884
4885
+ // / Estimate the register usage for \p Plan and vectorization factors in \p VFs.
4886
+ // / Returns the register usage for each VF in \p VFs.
4887
+ static SmallVector<LoopVectorizationCostModel::RegisterUsage, 8 >
4888
+ calculateRegisterUsage (VPlan &Plan, ArrayRef<ElementCount> VFs,
4889
+ const TargetTransformInfo &TTI) {
4890
+ // This function calculates the register usage by measuring the highest number
4891
+ // of values that are alive at a single location. Obviously, this is a very
4892
+ // rough estimation. We scan the loop in a topological order in order and
4893
+ // assign a number to each recipe. We use RPO to ensure that defs are
4894
+ // met before their users. We assume that each recipe that has in-loop
4895
+ // users starts an interval. We record every time that an in-loop value is
4896
+ // used, so we have a list of the first and last occurrences of each
4897
+ // recipe. Next, we transpose this data structure into a multi map that
4898
+ // holds the list of intervals that *end* at a specific location. This multi
4899
+ // map allows us to perform a linear search. We scan the instructions linearly
4900
+ // and record each time that a new interval starts, by placing it in a set.
4901
+ // If we find this value in the multi-map then we remove it from the set.
4902
+ // The max register usage is the maximum size of the set.
4903
+ // We also search for instructions that are defined outside the loop, but are
4904
+ // used inside the loop. We need this number separately from the max-interval
4905
+ // usage number because when we unroll, loop-invariant values do not take
4906
+ // more register.
4907
+ LoopVectorizationCostModel::RegisterUsage RU;
4908
+
4909
+ // Each 'key' in the map opens a new interval. The values
4910
+ // of the map are the index of the 'last seen' usage of the
4911
+ // recipe that is the key.
4912
+ using IntervalMap = SmallDenseMap<VPRecipeBase *, unsigned , 16 >;
4913
+
4914
+ // Maps recipe to its index.
4915
+ SmallVector<VPRecipeBase *, 64 > IdxToRecipe;
4916
+ // Marks the end of each interval.
4917
+ IntervalMap EndPoint;
4918
+ // Saves the list of recipe indices that are used in the loop.
4919
+ SmallPtrSet<VPRecipeBase *, 8 > Ends;
4920
+ // Saves the list of values that are used in the loop but are defined outside
4921
+ // the loop (not including non-recipe values such as arguments and
4922
+ // constants).
4923
+ SmallSetVector<VPValue *, 8 > LoopInvariants;
4924
+ LoopInvariants.insert (&Plan.getVectorTripCount ());
4925
+
4926
+ ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT (
4927
+ Plan.getVectorLoopRegion ());
4928
+ for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
4929
+ if (!VPBB->getParent ())
4930
+ break ;
4931
+ for (VPRecipeBase &R : *VPBB) {
4932
+ IdxToRecipe.push_back (&R);
4933
+
4934
+ // Save the end location of each USE.
4935
+ for (VPValue *U : R.operands ()) {
4936
+ auto *DefR = U->getDefiningRecipe ();
4937
+
4938
+ // Ignore non-recipe values such as arguments, constants, etc.
4939
+ // FIXME: Might need some motivation why these values are ignored. If
4940
+ // for example an argument is used inside the loop it will increase the
4941
+ // register pressure (so shouldn't we add it to LoopInvariants).
4942
+ if (!DefR && (!U->getLiveInIRValue () ||
4943
+ !isa<Instruction>(U->getLiveInIRValue ())))
4944
+ continue ;
4945
+
4946
+ // If this recipe is outside the loop then record it and continue.
4947
+ if (!DefR) {
4948
+ LoopInvariants.insert (U);
4949
+ continue ;
4950
+ }
4951
+
4952
+ // Overwrite previous end points.
4953
+ EndPoint[DefR] = IdxToRecipe.size ();
4954
+ Ends.insert (DefR);
4955
+ }
4956
+ }
4957
+ if (VPBB == Plan.getVectorLoopRegion ()->getExiting ()) {
4958
+ // VPWidenIntOrFpInductionRecipes are used implicitly at the end of the
4959
+ // exiting block, where their increment will get materialized eventually.
4960
+ for (auto &R : Plan.getVectorLoopRegion ()->getEntryBasicBlock ()->phis ()) {
4961
+ if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
4962
+ EndPoint[&R] = IdxToRecipe.size ();
4963
+ Ends.insert (&R);
4964
+ }
4965
+ }
4966
+ }
4967
+ }
4968
+
4969
+ // Saves the list of intervals that end with the index in 'key'.
4970
+ using RecipeList = SmallVector<VPRecipeBase *, 2 >;
4971
+ SmallDenseMap<unsigned , RecipeList, 16 > TransposeEnds;
4972
+
4973
+ // Transpose the EndPoints to a list of values that end at each index.
4974
+ for (auto &Interval : EndPoint)
4975
+ TransposeEnds[Interval.second ].push_back (Interval.first );
4976
+
4977
+ SmallPtrSet<VPRecipeBase *, 8 > OpenIntervals;
4978
+ SmallVector<LoopVectorizationCostModel::RegisterUsage, 8 > RUs (VFs.size ());
4979
+ SmallVector<SmallMapVector<unsigned , unsigned , 4 >, 8 > MaxUsages (VFs.size ());
4980
+
4981
+ LLVM_DEBUG (dbgs () << " LV(REG): Calculating max register usage:\n " );
4982
+
4983
+ VPTypeAnalysis TypeInfo (Plan.getCanonicalIV ()->getScalarType ());
4984
+
4985
+ const auto &TTICapture = TTI;
4986
+ auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
4987
+ if (Ty->isTokenTy () || !VectorType::isValidElementType (Ty) ||
4988
+ (VF.isScalable () &&
4989
+ !TTICapture.isElementTypeLegalForScalableVector (Ty)))
4990
+ return 0 ;
4991
+ return TTICapture.getRegUsageForType (VectorType::get (Ty, VF));
4992
+ };
4993
+
4994
+ for (unsigned int Idx = 0 , Sz = IdxToRecipe.size (); Idx < Sz; ++Idx) {
4995
+ VPRecipeBase *R = IdxToRecipe[Idx];
4996
+
4997
+ // Remove all of the recipes that end at this location.
4998
+ RecipeList &List = TransposeEnds[Idx];
4999
+ for (VPRecipeBase *ToRemove : List)
5000
+ OpenIntervals.erase (ToRemove);
5001
+
5002
+ // Ignore recipes that are never used within the loop.
5003
+ if (!Ends.count (R) && !R->mayHaveSideEffects ())
5004
+ continue ;
5005
+
5006
+ // For each VF find the maximum usage of registers.
5007
+ for (unsigned J = 0 , E = VFs.size (); J < E; ++J) {
5008
+ // Count the number of registers used, per register class, given all open
5009
+ // intervals.
5010
+ // Note that elements in this SmallMapVector will be default constructed
5011
+ // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
5012
+ // there is no previous entry for ClassID.
5013
+ SmallMapVector<unsigned , unsigned , 4 > RegUsage;
5014
+
5015
+ if (VFs[J].isScalar ()) {
5016
+ for (auto *Inst : OpenIntervals) {
5017
+ for (VPValue *DefV : Inst->definedValues ()) {
5018
+ unsigned ClassID = TTI.getRegisterClassForType (
5019
+ false , TypeInfo.inferScalarType (DefV));
5020
+ // FIXME: The target might use more than one register for the type
5021
+ // even in the scalar case.
5022
+ RegUsage[ClassID] += 1 ;
5023
+ }
5024
+ }
5025
+ } else {
5026
+ for (auto *R : OpenIntervals) {
5027
+ if (isa<VPVectorPointerRecipe, VPReverseVectorPointerRecipe>(R))
5028
+ continue ;
5029
+ if (isa<VPCanonicalIVPHIRecipe, VPReplicateRecipe, VPDerivedIVRecipe,
5030
+ VPScalarIVStepsRecipe>(R) ||
5031
+ (isa<VPInstruction>(R) &&
5032
+ all_of (cast<VPSingleDefRecipe>(R)->users (), [&](VPUser *U) {
5033
+ return cast<VPRecipeBase>(U)->usesScalars (
5034
+ R->getVPSingleValue ());
5035
+ }))) {
5036
+ unsigned ClassID = TTI.getRegisterClassForType (
5037
+ false , TypeInfo.inferScalarType (R->getVPSingleValue ()));
5038
+ // FIXME: The target might use more than one register for the type
5039
+ // even in the scalar case.
5040
+ RegUsage[ClassID] += 1 ;
5041
+ } else {
5042
+ for (VPValue *DefV : R->definedValues ()) {
5043
+ Type *ScalarTy = TypeInfo.inferScalarType (DefV);
5044
+ unsigned ClassID = TTI.getRegisterClassForType (true , ScalarTy);
5045
+ RegUsage[ClassID] += GetRegUsage (ScalarTy, VFs[J]);
5046
+ }
5047
+ }
5048
+ }
5049
+ }
5050
+
5051
+ for (const auto &Pair : RegUsage) {
5052
+ auto &Entry = MaxUsages[J][Pair.first ];
5053
+ Entry = std::max (Entry, Pair.second );
5054
+ }
5055
+ }
5056
+
5057
+ LLVM_DEBUG (dbgs () << " LV(REG): At #" << Idx << " Interval # "
5058
+ << OpenIntervals.size () << ' \n ' );
5059
+
5060
+ // Add the current recipe to the list of open intervals.
5061
+ OpenIntervals.insert (R);
5062
+ }
5063
+
5064
+ for (unsigned Idx = 0 , End = VFs.size (); Idx < End; ++Idx) {
5065
+ // Note that elements in this SmallMapVector will be default constructed
5066
+ // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
5067
+ // there is no previous entry for ClassID.
5068
+ SmallMapVector<unsigned , unsigned , 4 > Invariant;
5069
+
5070
+ for (auto *In : LoopInvariants) {
5071
+ // FIXME: The target might use more than one register for the type
5072
+ // even in the scalar case.
5073
+ bool IsScalar = all_of (In->users (), [&](VPUser *U) {
5074
+ return cast<VPRecipeBase>(U)->usesScalars (In);
5075
+ });
5076
+
5077
+ ElementCount VF = IsScalar ? ElementCount::getFixed (1 ) : VFs[Idx];
5078
+ unsigned ClassID = TTI.getRegisterClassForType (
5079
+ VF.isVector (), TypeInfo.inferScalarType (In));
5080
+ Invariant[ClassID] += GetRegUsage (TypeInfo.inferScalarType (In), VF);
5081
+ }
5082
+
5083
+ LLVM_DEBUG ({
5084
+ dbgs () << " LV(REG): VF = " << VFs[Idx] << ' \n ' ;
5085
+ dbgs () << " LV(REG): Found max usage: " << MaxUsages[Idx].size ()
5086
+ << " item\n " ;
5087
+ for (const auto &pair : MaxUsages[Idx]) {
5088
+ dbgs () << " LV(REG): RegisterClass: "
5089
+ << TTI.getRegisterClassName (pair.first ) << " , " << pair.second
5090
+ << " registers\n " ;
5091
+ }
5092
+ dbgs () << " LV(REG): Found invariant usage: " << Invariant.size ()
5093
+ << " item\n " ;
5094
+ for (const auto &pair : Invariant) {
5095
+ dbgs () << " LV(REG): RegisterClass: "
5096
+ << TTI.getRegisterClassName (pair.first ) << " , " << pair.second
5097
+ << " registers\n " ;
5098
+ }
5099
+ });
5100
+
5101
+ RU.LoopInvariantRegs = Invariant;
5102
+ RU.MaxLocalUsers = MaxUsages[Idx];
5103
+ RUs[Idx] = RU;
5104
+ }
5105
+
5106
+ return RUs;
5107
+ }
5108
+
4884
5109
unsigned
4885
- LoopVectorizationCostModel::selectInterleaveCount (ElementCount VF,
5110
+ LoopVectorizationCostModel::selectInterleaveCount (VPlan &Plan, ElementCount VF,
4886
5111
InstructionCost LoopCost) {
4887
5112
// -- The interleave heuristics --
4888
5113
// We interleave the loop in order to expose ILP and reduce the loop overhead.
@@ -4932,7 +5157,7 @@ LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
4932
5157
return 1 ;
4933
5158
}
4934
5159
4935
- RegisterUsage R = calculateRegisterUsage ({VF})[0 ];
5160
+ RegisterUsage R = :: calculateRegisterUsage (Plan, {VF}, TTI )[0 ];
4936
5161
// We divide by these constants so assume that we have at least one
4937
5162
// instruction that uses at least one register.
4938
5163
for (auto &Pair : R.MaxLocalUsers ) {
@@ -10717,7 +10942,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
10717
10942
AddBranchWeights, CM.CostKind );
10718
10943
if (LVP.hasPlanWithVF (VF.Width )) {
10719
10944
// Select the interleave count.
10720
- IC = CM.selectInterleaveCount (VF.Width , VF.Cost );
10945
+ IC = CM.selectInterleaveCount (LVP. getPlanFor (VF. Width ), VF.Width , VF.Cost );
10721
10946
10722
10947
unsigned SelectedIC = std::max (IC, UserIC);
10723
10948
// Optimistically generate runtime checks if they are needed. Drop them if
0 commit comments