Skip to content

Commit f0bbb8d

Browse files
committed
[mlir][vector] Add scalable lowering for transfer_write(transpose)
This specifically handles the case of a transpose from a vector type like `vector<8x[4]xf32>` to `vector<[4]x8xf32>`. Such transposes occur fairly frequently when scalably vectorizing `linalg.generic`s. There is no direct lowering for these (as types like `vector<[4]x8xf32>` cannot be represented in LLVM-IR). However, if the only use of the transpose is a write, then it is possible to lower the `transfer_write(transpose)` as a VLA loop. Example: ```mlir %transpose = vector.transpose %vec, [1, 0] : vector<4x[4]xf32> to vector<[4]x4xf32> vector.transfer_write %transpose, %dest[%i, %j] {in_bounds = [true, true]} : vector<[4]x4xf32>, memref<?x?xf32> ``` Becomes: ```mlir %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %c0 = arith.constant 0 : index %0 = vector.extract %arg0[0] : vector<[4]xf32> from vector<4x[4]xf32> %1 = vector.extract %arg0[1] : vector<[4]xf32> from vector<4x[4]xf32> %2 = vector.extract %arg0[2] : vector<[4]xf32> from vector<4x[4]xf32> %3 = vector.extract %arg0[3] : vector<[4]xf32> from vector<4x[4]xf32> %vscale = vector.vscale %c4_vscale = arith.muli %vscale, %c4 : index scf.for %idx = %c0 to %c4_vscale step %c1 { %4 = vector.extract %0[%idx] : f32 from vector<[4]xf32> %5 = vector.extract %1[%idx] : f32 from vector<[4]xf32> %6 = vector.extract %2[%idx] : f32 from vector<[4]xf32> %7 = vector.extract %3[%idx] : f32 from vector<[4]xf32> %slice_i = affine.apply #map(%idx)[%i] %slice = vector.from_elements %4, %5, %6, %7 : vector<4xf32> vector.transfer_write %slice, %arg1[%slice_i, %j] {in_bounds = [true]} : vector<4xf32>, memref<?x?xf32> } ```
1 parent 9dadb1f commit f0bbb8d

File tree

5 files changed

+328
-12
lines changed

5 files changed

+328
-12
lines changed

mlir/include/mlir/Conversion/Passes.td

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1300,7 +1300,9 @@ def ConvertVectorToSCF : Pass<"convert-vector-to-scf"> {
13001300
Option<"targetRank", "target-rank", "unsigned", /*default=*/"1",
13011301
"Target vector rank to which transfer ops should be lowered">,
13021302
Option<"lowerTensors", "lower-tensors", "bool", /*default=*/"false",
1303-
"Lower transfer ops that operate on tensors">
1303+
"Lower transfer ops that operate on tensors">,
1304+
Option<"lowerScalable", "lower-scalable", "bool", /*default=*/"false",
1305+
"Add scalable vector specific lowerings (that introduce loops)">
13041306
];
13051307
}
13061308

mlir/include/mlir/Conversion/VectorToSCF/VectorToSCF.h

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -69,6 +69,14 @@ struct VectorTransferToSCFOptions {
6969
unroll = u;
7070
return *this;
7171
}
72+
/// Enable scalable vector specific lowerings (which introduce loops). These
73+
/// work alongside fullUnroll (which unrolls until the first scalable
74+
/// dimension).
75+
bool lowerScalable = false;
76+
VectorTransferToSCFOptions enableLowerScalable(bool enable = true) {
77+
lowerScalable = enable;
78+
return *this;
79+
}
7280
};
7381

7482
/// Collect a set of patterns to convert from the Vector dialect to SCF + func.

mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp

Lines changed: 186 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
#include "mlir/Dialect/Vector/IR/VectorOps.h"
2525
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
2626
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
27+
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
2728
#include "mlir/IR/Builders.h"
2829
#include "mlir/IR/ImplicitLocOpBuilder.h"
2930
#include "mlir/Pass/Pass.h"
@@ -987,6 +988,185 @@ struct TransferOpConversion : public VectorToSCFPattern<OpTy> {
987988
}
988989
};
989990

991+
/// Retrieves the dimensions sizes of a mask. Currently supports CreateMaskOp
992+
/// and ConstantMaskOp.
993+
template <typename VscaleConstantBuilder>
994+
static FailureOr<SmallVector<OpFoldResult>>
995+
getMaskDimSizes(Value mask, VscaleConstantBuilder &createVscaleMultiple) {
996+
if (!mask)
997+
return SmallVector<OpFoldResult>{};
998+
if (auto createMaskOp = mask.getDefiningOp<vector::CreateMaskOp>()) {
999+
return llvm::map_to_vector(createMaskOp.getOperands(), [](Value dimSize) {
1000+
return OpFoldResult(dimSize);
1001+
});
1002+
}
1003+
if (auto constantMask = mask.getDefiningOp<vector::ConstantMaskOp>()) {
1004+
int dimIdx = 0;
1005+
VectorType maskType = constantMask.getVectorType();
1006+
auto indexType = IndexType::get(mask.getContext());
1007+
return llvm::map_to_vector(
1008+
constantMask.getMaskDimSizes(), [&](int64_t dimSize) {
1009+
// A scalable dim in a constant_mask means vscale x dimSize.
1010+
if (maskType.getScalableDims()[dimIdx++])
1011+
return OpFoldResult(createVscaleMultiple(dimSize));
1012+
return OpFoldResult(IntegerAttr::get(indexType, dimSize));
1013+
});
1014+
}
1015+
return failure();
1016+
}
1017+
1018+
/// Scalable vector lowering of transfer_write(transpose). This lowering only
1019+
/// supports rank 2 (scalable) vectors, but can be used in in conjunction with
1020+
/// `UnrollTransferWriteConversion` to support n-D cases. The unroll conversion
1021+
/// unrolls until the first scalable dimension.
1022+
///
1023+
/// Example:
1024+
///
1025+
/// BEFORE:
1026+
/// ```mlir
1027+
/// %transpose = vector.transpose %vec, [1, 0]
1028+
/// : vector<4x[4]xf32> to vector<[4]x4xf32>
1029+
/// vector.transfer_write %transpose, %dest[%i, %j] {in_bounds = [true, true]}
1030+
/// : vector<[4]x4xf32>, memref<?x?xf32>
1031+
/// ```
1032+
///
1033+
/// AFTER:
1034+
/// ```mlir
1035+
/// %c1 = arith.constant 1 : index
1036+
/// %c4 = arith.constant 4 : index
1037+
/// %c0 = arith.constant 0 : index
1038+
/// %0 = vector.extract %arg0[0] : vector<[4]xf32> from vector<4x[4]xf32>
1039+
/// %1 = vector.extract %arg0[1] : vector<[4]xf32> from vector<4x[4]xf32>
1040+
/// %2 = vector.extract %arg0[2] : vector<[4]xf32> from vector<4x[4]xf32>
1041+
/// %3 = vector.extract %arg0[3] : vector<[4]xf32> from vector<4x[4]xf32>
1042+
/// %vscale = vector.vscale
1043+
/// %c4_vscale = arith.muli %vscale, %c4 : index
1044+
/// scf.for %idx = %c0 to %c4_vscale step %c1 {
1045+
/// %4 = vector.extract %0[%idx] : f32 from vector<[4]xf32>
1046+
/// %5 = vector.extract %1[%idx] : f32 from vector<[4]xf32>
1047+
/// %6 = vector.extract %2[%idx] : f32 from vector<[4]xf32>
1048+
/// %7 = vector.extract %3[%idx] : f32 from vector<[4]xf32>
1049+
/// %slice_i = affine.apply #map(%idx)[%i]
1050+
/// %slice = vector.from_elements %4, %5, %6, %7 : vector<4xf32>
1051+
/// vector.transfer_write %slice, %arg1[%slice_i, %j] {in_bounds = [true]}
1052+
/// : vector<4xf32>, memref<?x?xf32>
1053+
/// }
1054+
/// ```
1055+
struct ScalableTransposeTransferWriteConversion
1056+
: VectorToSCFPattern<vector::TransferWriteOp> {
1057+
using VectorToSCFPattern::VectorToSCFPattern;
1058+
1059+
LogicalResult matchAndRewrite(TransferWriteOp writeOp,
1060+
PatternRewriter &rewriter) const override {
1061+
if (isTensorOp(writeOp) && !options.lowerTensors) {
1062+
return rewriter.notifyMatchFailure(
1063+
writeOp, "lowering tensor transfers is disabled");
1064+
}
1065+
1066+
auto vector = writeOp.getVector();
1067+
auto vectorType = vector.getType();
1068+
auto scalableFlags = vectorType.getScalableDims();
1069+
if (scalableFlags != ArrayRef<bool>{true, false}) {
1070+
return rewriter.notifyMatchFailure(
1071+
writeOp, "expected vector of form vector<[*]x*xty>");
1072+
}
1073+
1074+
auto permutationMap = writeOp.getPermutationMap();
1075+
if (!permutationMap.isIdentity()) {
1076+
return rewriter.notifyMatchFailure(
1077+
writeOp, "non-identity permutations are unsupported (lower first)");
1078+
}
1079+
1080+
if (!writeOp.isDimInBounds(0)) {
1081+
return rewriter.notifyMatchFailure(
1082+
writeOp, "out-of-bounds dims are unsupported (use masking)");
1083+
}
1084+
1085+
auto transposeOp = vector.getDefiningOp<vector::TransposeOp>();
1086+
if (!transposeOp ||
1087+
transposeOp.getPermutation() != ArrayRef<int64_t>{1, 0}) {
1088+
return rewriter.notifyMatchFailure(writeOp, "source not transpose");
1089+
}
1090+
1091+
auto loc = writeOp.getLoc();
1092+
auto createVscaleMultiple =
1093+
vector::makeVscaleConstantBuilder(rewriter, loc);
1094+
1095+
auto maskDims = getMaskDimSizes(writeOp.getMask(), createVscaleMultiple);
1096+
if (failed(maskDims)) {
1097+
return rewriter.notifyMatchFailure(writeOp,
1098+
"failed to resolve mask dims");
1099+
}
1100+
1101+
int64_t fixedDimSize = vectorType.getDimSize(1);
1102+
auto fixedDimOffsets = llvm::seq(fixedDimSize);
1103+
1104+
// Extract all slices from the source of the transpose.
1105+
auto transposeSource = transposeOp.getVector();
1106+
SmallVector<Value> transposeSourceSlices =
1107+
llvm::map_to_vector(fixedDimOffsets, [&](int64_t idx) -> Value {
1108+
return rewriter.create<vector::ExtractOp>(loc, transposeSource, idx);
1109+
});
1110+
1111+
// Loop bounds and step.
1112+
auto lb = rewriter.create<arith::ConstantIndexOp>(loc, 0);
1113+
auto ub =
1114+
maskDims->empty()
1115+
? Value(createVscaleMultiple(vectorType.getDimSize(0)))
1116+
: vector::getAsValues(rewriter, loc, maskDims->front()).front();
1117+
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
1118+
1119+
// Generate a new mask for the slice.
1120+
VectorType sliceType = VectorType::Builder(vectorType).dropDim(0);
1121+
Value sliceMask = nullptr;
1122+
if (!maskDims->empty()) {
1123+
sliceMask = rewriter.create<vector::CreateMaskOp>(
1124+
loc, sliceType.clone(rewriter.getI1Type()),
1125+
ArrayRef<OpFoldResult>(*maskDims).drop_front());
1126+
}
1127+
1128+
ValueRange initLoopArgs =
1129+
isTensorOp(writeOp) ? writeOp.getSource() : ValueRange{};
1130+
auto result = rewriter.create<scf::ForOp>(
1131+
loc, lb, ub, step, initLoopArgs,
1132+
[&](OpBuilder &b, Location loc, Value iv, ValueRange loopIterArgs) {
1133+
// Indices for the new transfer op.
1134+
SmallVector<Value, 8> xferIndices;
1135+
getXferIndices(b, writeOp, iv, xferIndices);
1136+
1137+
// Extract a transposed slice from the source vector.
1138+
SmallVector<Value> transposeElements =
1139+
llvm::map_to_vector(fixedDimOffsets, [&](int64_t idx) -> Value {
1140+
return b.create<vector::ExtractOp>(
1141+
loc, transposeSourceSlices[idx], iv);
1142+
});
1143+
auto sliceVec = b.create<vector::FromElementsOp>(loc, sliceType,
1144+
transposeElements);
1145+
1146+
// Create the transfer_write for the slice.
1147+
Value dest =
1148+
loopIterArgs.empty() ? writeOp.getSource() : loopIterArgs.front();
1149+
auto newWriteOp = b.create<vector::TransferWriteOp>(
1150+
loc, sliceVec, dest, xferIndices,
1151+
ArrayRef<bool>(writeOp.getInBoundsValues()).drop_front());
1152+
if (sliceMask)
1153+
newWriteOp.getMaskMutable().assign(sliceMask);
1154+
1155+
// Yield from the loop.
1156+
b.create<scf::YieldOp>(loc, loopIterArgs.empty()
1157+
? ValueRange{}
1158+
: newWriteOp.getResult());
1159+
});
1160+
1161+
if (isTensorOp(writeOp))
1162+
rewriter.replaceOp(writeOp, result);
1163+
else
1164+
rewriter.eraseOp(writeOp);
1165+
1166+
return success();
1167+
}
1168+
};
1169+
9901170
} // namespace lowering_n_d
9911171

9921172
namespace lowering_n_d_unrolled {
@@ -1503,7 +1683,10 @@ void mlir::populateVectorToSCFConversionPatterns(
15031683
lowering_n_d::TransferOpConversion<TransferWriteOp>>(
15041684
patterns.getContext(), options);
15051685
}
1506-
1686+
if (options.lowerScalable) {
1687+
patterns.add<lowering_n_d::ScalableTransposeTransferWriteConversion>(
1688+
patterns.getContext(), options);
1689+
}
15071690
if (options.targetRank == 1) {
15081691
patterns.add<lowering_1_d::TransferOp1dConversion<TransferReadOp>,
15091692
lowering_1_d::TransferOp1dConversion<TransferWriteOp>>(
@@ -1522,13 +1705,15 @@ struct ConvertVectorToSCFPass
15221705
this->fullUnroll = options.unroll;
15231706
this->targetRank = options.targetRank;
15241707
this->lowerTensors = options.lowerTensors;
1708+
this->lowerScalable = options.lowerScalable;
15251709
}
15261710

15271711
void runOnOperation() override {
15281712
VectorTransferToSCFOptions options;
15291713
options.unroll = fullUnroll;
15301714
options.targetRank = targetRank;
15311715
options.lowerTensors = lowerTensors;
1716+
options.lowerScalable = lowerScalable;
15321717

15331718
// Lower permutation maps first.
15341719
RewritePatternSet lowerTransferPatterns(&getContext());

mlir/test/Conversion/VectorToSCF/tensor-transfer-ops.mlir

Lines changed: 14 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(convert-vector-to-scf{lower-tensors=true}))" -split-input-file -allow-unregistered-dialect | FileCheck %s
1+
// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(convert-vector-to-scf{lower-tensors=true lower-scalable=true}))" -split-input-file -allow-unregistered-dialect | FileCheck %s
22

33
// CHECK-LABEL: func @transfer_read_2d(
44
// CHECK: %[[ALLOC:.*]] = memref.alloca() : memref<vector<4x9xf32>>
@@ -36,3 +36,16 @@ func.func @transfer_write_2d(%A : tensor<?x?xf32>, %vec : vector<2x3xf32>,
3636
return %t : tensor<?x?xf32>
3737
}
3838

39+
// -----
40+
41+
// CHECK-LABEL: func @scalable_transpose_store
42+
// CHECK-SAME: %[[TENSOR:[a-z0-9]+]]: tensor<?x?xf32>
43+
// CHECK: %[[RESULT:.*]] = scf.for {{.*}} iter_args(%[[ITER_ARG:.*]] = %[[TENSOR]]) -> (tensor<?x?xf32>)
44+
// CHECK: %[[WRITE_SLICE:.*]] = vector.transfer_write %{{.*}} %[[ITER_ARG]]
45+
// CHECK: scf.yield %[[WRITE_SLICE]]
46+
// CHECK: return %[[RESULT]]
47+
func.func @scalable_transpose_store(%vec: vector<4x[4]xf32>, %dest: tensor<?x?xf32>, %i: index, %j: index) -> tensor<?x?xf32> {
48+
%transpose = vector.transpose %vec, [1, 0] : vector<4x[4]xf32> to vector<[4]x4xf32>
49+
%result = vector.transfer_write %transpose, %dest[%i, %j] {in_bounds = [true, true]} : vector<[4]x4xf32>, tensor<?x?xf32>
50+
return %result : tensor<?x?xf32>
51+
}

0 commit comments

Comments
 (0)