|
| 1 | +// RUN: mlir-opt --transform-interpreter --canonicalize --split-input-file %s | FileCheck %s |
| 2 | + |
| 3 | +// This tests the results of continuous_tile_sizes on multiway splitOp. |
| 4 | +// continuous_tile_sizes returns a list of tile-sizes and a list of split points. |
| 5 | +// The list of split points is consumed by splitOp to split the linalg.matmul op |
| 6 | +// along dimension 1 to produce as many split-up linalg.matmul ops. |
| 7 | +module attributes {transform.with_named_sequence} { |
| 8 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 9 | + %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| 10 | + %tiles, %splits = transform.structured.continuous_tile_sizes %0 { dimension = 1, target_size = 9} : (!transform.any_op) -> !transform.any_op |
| 11 | + %low, %high = transform.structured.split %0 after %splits { dimension = 1, multiway } : !transform.any_op, !transform.any_op |
| 12 | + transform.yield |
| 13 | + } |
| 14 | +} |
| 15 | + |
| 16 | +func.func @continuous_tile_linalg_matmul( |
| 17 | + %arg0: tensor<25x34xf32>, %arg1: tensor<34x25xf32>, %arg2: tensor<25x25xf32>) |
| 18 | + -> tensor<25x25xf32> { |
| 19 | + %0 = linalg.matmul ins(%arg0, %arg1: tensor<25x34xf32>, tensor<34x25xf32>) |
| 20 | + outs(%arg2: tensor<25x25xf32>) |
| 21 | + -> tensor<25x25xf32> |
| 22 | + |
| 23 | + return %0 : tensor<25x25xf32> |
| 24 | +} |
| 25 | + |
| 26 | +// CHECK-LABEL: @continuous_tile_linalg_matmul |
| 27 | +// CHECK-SAME: %[[IN1:.+]]: tensor<25x34xf32>, %[[IN2:.+]]: tensor<34x25xf32>, %[[OUT:.+]]: tensor<25x25xf32> |
| 28 | +// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[IN2]][0, 0] [34, 18] [1, 1] : tensor<34x25xf32> to tensor<34x18xf32> |
| 29 | +// CHECK %[[SLICE0:.+]] = tensor.extract_slice %[[OUT]][0, 0] [25, 18] [1, 1] : tensor<25x25xf32> to tensor<25x18xf32> |
| 30 | +// CHECK %[[MM0:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE]] : tensor<25x34xf32>, tensor<34x18xf32>) outs(%[[SLICE0]] : tensor<25x18xf32>) -> tensor<25x18xf32> |
| 31 | +// CHECK %[[INSLICE:.+]] = tensor.insert_slice %[[MM0]] into %[[OUT]][0, 0] [25, 18] [1, 1] : tensor<25x18xf32> into tensor<25x25xf32> |
| 32 | +// CHECK %[[SLICE1]] = tensor.extract_slice %[[IN2]][0, 18] [34, 7] [1, 1] : tensor<34x25xf32> to tensor<34x7xf32> |
| 33 | +// CHECK %[[SLICE2]] = tensor.extract_slice %[[INSLICE]][0, 18] [25, 7] [1, 1] : tensor<25x25xf32> to tensor<25x7xf32> |
| 34 | +// CHECK %[[SLICE3]] = tensor.extract_slice %[[SLICE1]][0, 0] [34, 4] [1, 1] : tensor<34x7xf32> to tensor<34x4xf32> |
| 35 | +// CHECK %[[SLICE4]] = tensor.extract_slice %[[SLICE2]][0, 0] [25, 4] [1, 1] : tensor<25x7xf32> to tensor<25x4xf32> |
| 36 | +// CHECK %[[MM1:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE3]] : tensor<25x34xf32>, tensor<34x4xf32>) outs(%[[SLICE4]] : tensor<25x4xf32>) -> tensor<25x4xf32> |
| 37 | +// CHECK %[[INSLICE0:.+]] = tensor.insert_slice %[[MM1]] into %[[SLICE2]][0, 0] [25, 4] [1, 1] : tensor<25x4xf32> into tensor<25x7xf32> |
| 38 | +// CHECK %[[SLICE5]] = tensor.extract_slice %[[SLICE1]][0, 4] [34, 3] [1, 1] : tensor<34x7xf32> to tensor<34x3xf32> |
| 39 | +// CHECK %[[SLICE6]] = tensor.extract_slice %[[INSLICE0]][0, 4] [25, 3] [1, 1] : tensor<25x7xf32> to tensor<25x3xf32> |
| 40 | +// CHECK %[[SLICE7]] = tensor.extract_slice %[[SLICE5]][0, 0] [34, 2] [1, 1] : tensor<34x3xf32> to tensor<34x2xf32> |
| 41 | +// CHECK %[[SLICE8]] = tensor.extract_slice %[[SLICE6]][0, 0] [25, 2] [1, 1] : tensor<25x3xf32> to tensor<25x2xf32> |
| 42 | +// CHECK %[[MM2:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE7]] : tensor<25x34xf32>, tensor<34x2xf32>) outs(%[[SLICE8]] : tensor<25x2xf32>) -> tensor<25x2xf32> |
| 43 | +// CHECK %[[INSLICE1:.+]] = tensor.insert_slice %[[MM2]] into %[[SLICE6]][0, 0] [25, 2] [1, 1] : tensor<25x2xf32> into tensor<25x3xf32> |
| 44 | +// CHECK %[[SLICE9]] = tensor.extract_slice %[[SLICE5]][0, 2] [34, 1] [1, 1] : tensor<34x3xf32> to tensor<34x1xf32> |
| 45 | +// CHECK %[[SLICE10]] = tensor.extract_slice %[[INSLICE1]][0, 2] [25, 1] [1, 1] : tensor<25x3xf32> to tensor<25x1xf32> |
| 46 | +// CHECK %[[MM3:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE9]] : tensor<25x34xf32>, tensor<34x1xf32>) outs(%[[SLICE10]] : tensor<25x1xf32>) -> tensor<25x1xf32> |
| 47 | +// CHECK %[[INSLICE2]] = tensor.insert_slice %[[MM3]] into %[[INSLICE1]][0, 2] [25, 1] [1, 1] : tensor<25x1xf32> into tensor<25x3xf32> |
| 48 | +// CHECK %[[INSLICE3]] = tensor.insert_slice %[[INSLICE2]] into %[[INSLICE0]][0, 4] [25, 3] [1, 1] : tensor<25x3xf32> into tensor<25x7xf32> |
| 49 | +// CHECK %[[INSLICE4]] = tensor.insert_slice %[[INSLICE3]] into %[[INSLICE]][0, 18] [25, 7] [1, 1] : tensor<25x7xf32> into tensor<25x25xf32> |
| 50 | +// CHECK return %[[INSLICE4]] : tensor<25x25xf32> |
| 51 | + |
| 52 | +// ----- |
| 53 | + |
| 54 | +// Tests the same as above except that the !transform.param<i64> output type in |
| 55 | +// continuous_tile_sizes op triggers tile sizes and split points to be computed |
| 56 | +// statically and not dynamically. |
| 57 | +module attributes {transform.with_named_sequence} { |
| 58 | + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| 59 | + %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| 60 | + %tiles, %splits = transform.structured.continuous_tile_sizes %0 { dimension = 1, target_size = 9} : (!transform.any_op) -> !transform.param<i64> |
| 61 | + %low, %high = transform.structured.split %0 after %splits { dimension = 1, multiway } : !transform.any_op, !transform.param<i64> |
| 62 | + transform.yield |
| 63 | + } |
| 64 | +} |
| 65 | + |
| 66 | +func.func @continuous_tile_static_linalg_matmul( |
| 67 | + %arg0: tensor<25x34xf32>, %arg1: tensor<34x25xf32>, %arg2: tensor<25x25xf32>) |
| 68 | + -> tensor<25x25xf32> { |
| 69 | + %0 = linalg.matmul ins(%arg0, %arg1: tensor<25x34xf32>, tensor<34x25xf32>) |
| 70 | + outs(%arg2: tensor<25x25xf32>) |
| 71 | + -> tensor<25x25xf32> |
| 72 | + |
| 73 | + return %0 : tensor<25x25xf32> |
| 74 | +} |
| 75 | + |
| 76 | +// CHECK-LABEL: @continuous_tile_static_linalg_matmul |
| 77 | +// CHECK-SAME: %[[IN1:.+]]: tensor<25x34xf32>, %[[IN2:.+]]: tensor<34x25xf32>, %[[OUT:.+]]: tensor<25x25xf32> |
| 78 | +// CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[IN2]][0, 0] [34, 18] [1, 1] : tensor<34x25xf32> to tensor<34x18xf32> |
| 79 | +// CHECK %[[SLICE0:.+]] = tensor.extract_slice %[[OUT]][0, 0] [25, 18] [1, 1] : tensor<25x25xf32> to tensor<25x18xf32> |
| 80 | +// CHECK %[[MM0:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE]] : tensor<25x34xf32>, tensor<34x18xf32>) outs(%[[SLICE0]] : tensor<25x18xf32>) -> tensor<25x18xf32> |
| 81 | +// CHECK %[[INSLICE:.+]] = tensor.insert_slice %[[MM0]] into %[[OUT]][0, 0] [25, 18] [1, 1] : tensor<25x18xf32> into tensor<25x25xf32> |
| 82 | +// CHECK %[[SLICE1]] = tensor.extract_slice %[[IN2]][0, 18] [34, 7] [1, 1] : tensor<34x25xf32> to tensor<34x7xf32> |
| 83 | +// CHECK %[[SLICE2]] = tensor.extract_slice %[[INSLICE]][0, 18] [25, 7] [1, 1] : tensor<25x25xf32> to tensor<25x7xf32> |
| 84 | +// CHECK %[[SLICE3]] = tensor.extract_slice %[[SLICE1]][0, 0] [34, 4] [1, 1] : tensor<34x7xf32> to tensor<34x4xf32> |
| 85 | +// CHECK %[[SLICE4]] = tensor.extract_slice %[[SLICE2]][0, 0] [25, 4] [1, 1] : tensor<25x7xf32> to tensor<25x4xf32> |
| 86 | +// CHECK %[[MM1:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE3]] : tensor<25x34xf32>, tensor<34x4xf32>) outs(%[[SLICE4]] : tensor<25x4xf32>) -> tensor<25x4xf32> |
| 87 | +// CHECK %[[INSLICE0:.+]] = tensor.insert_slice %[[MM1]] into %[[SLICE2]][0, 0] [25, 4] [1, 1] : tensor<25x4xf32> into tensor<25x7xf32> |
| 88 | +// CHECK %[[SLICE5]] = tensor.extract_slice %[[SLICE1]][0, 4] [34, 3] [1, 1] : tensor<34x7xf32> to tensor<34x3xf32> |
| 89 | +// CHECK %[[SLICE6]] = tensor.extract_slice %[[INSLICE0]][0, 4] [25, 3] [1, 1] : tensor<25x7xf32> to tensor<25x3xf32> |
| 90 | +// CHECK %[[SLICE7]] = tensor.extract_slice %[[SLICE5]][0, 0] [34, 2] [1, 1] : tensor<34x3xf32> to tensor<34x2xf32> |
| 91 | +// CHECK %[[SLICE8]] = tensor.extract_slice %[[SLICE6]][0, 0] [25, 2] [1, 1] : tensor<25x3xf32> to tensor<25x2xf32> |
| 92 | +// CHECK %[[MM2:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE7]] : tensor<25x34xf32>, tensor<34x2xf32>) outs(%[[SLICE8]] : tensor<25x2xf32>) -> tensor<25x2xf32> |
| 93 | +// CHECK %[[INSLICE1:.+]] = tensor.insert_slice %[[MM2]] into %[[SLICE6]][0, 0] [25, 2] [1, 1] : tensor<25x2xf32> into tensor<25x3xf32> |
| 94 | +// CHECK %[[SLICE9]] = tensor.extract_slice %[[SLICE5]][0, 2] [34, 1] [1, 1] : tensor<34x3xf32> to tensor<34x1xf32> |
| 95 | +// CHECK %[[SLICE10]] = tensor.extract_slice %[[INSLICE1]][0, 2] [25, 1] [1, 1] : tensor<25x3xf32> to tensor<25x1xf32> |
| 96 | +// CHECK %[[MM3:.+]] = linalg.matmul ins(%[[IN1]], %[[SLICE9]] : tensor<25x34xf32>, tensor<34x1xf32>) outs(%[[SLICE10]] : tensor<25x1xf32>) -> tensor<25x1xf32> |
| 97 | +// CHECK %[[INSLICE2]] = tensor.insert_slice %[[MM3]] into %[[INSLICE1]][0, 2] [25, 1] [1, 1] : tensor<25x1xf32> into tensor<25x3xf32> |
| 98 | +// CHECK %[[INSLICE3]] = tensor.insert_slice %[[INSLICE2]] into %[[INSLICE0]][0, 4] [25, 3] [1, 1] : tensor<25x3xf32> into tensor<25x7xf32> |
| 99 | +// CHECK %[[INSLICE4]] = tensor.insert_slice %[[INSLICE3]] into %[[INSLICE]][0, 18] [25, 7] [1, 1] : tensor<25x7xf32> into tensor<25x25xf32> |
| 100 | +// CHECK return %[[INSLICE4]] : tensor<25x25xf32> |
0 commit comments