Skip to content

[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130282) #130293

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -477,13 +477,13 @@ class DepthwiseConvConverter
return rewriter.notifyMatchFailure(
op, "weight zero point must be zero for non-int8 integer types");

bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
bool hasNullZps = (inputZpVal == 0) && (weightZpVal == 0);
auto weightShape = weightTy.getShape();
auto resultShape = resultTy.getShape();

// Apply padding as necessary.
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
if (hasZp) {
if (!hasNullZps) {
int64_t intMin =
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
.getSExtValue();
Expand Down Expand Up @@ -536,7 +536,7 @@ class DepthwiseConvConverter
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));

if (!hasZp) {
if (hasNullZps) {
Value conv = rewriter
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
loc, linalgConvTy, ValueRange{input, weight},
Expand All @@ -556,8 +556,13 @@ class DepthwiseConvConverter
getNParallelLoopsAttrs(resultRank),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
Value added = nestedBuilder.create<arith::AddFOp>(
loc, args[0], args[1]);
Value added;
if (llvm::isa<FloatType>(inputETy))
added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
args[1]);
else
added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);
Expand Down
24 changes: 24 additions & 0 deletions mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -812,6 +812,30 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x

// -----

// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>

// CHECK-LABEL: @depthwise_int_conv_zero_zp
func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[OUT:%.+]] = tensor.empty()
// CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
// CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
// CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
// CHECK: linalg.yield [[ADD]] : i32
// CHECK: } -> tensor<1x5x5x33xi32>
%input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%weight_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
return
}

// -----

// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>

Expand Down
Loading