Skip to content

[LV][NFC] Move and add truncated-related FindLastIV reduction test cases. #67674

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
285 changes: 285 additions & 0 deletions llvm/test/Transforms/LoopVectorize/iv-select-cmp-trunc.ll
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
; RUN: opt -passes=loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK
; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK
; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=1 -S < %s | FileCheck %s --check-prefix=CHECK
Comment on lines +1 to +3
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please remove --check-prefix=CHECK, as it is the default check prefix.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I prefer to keep "--check-prefix=CHECK". Will soon be changed to "--check-prefix=CHECK-VF4IC1 --check-prefix=CHECK".


; This test can theoretically be vectorized without a runtime-check, by
; pattern-matching on the constructs that are introduced by IndVarSimplify.
; We can check two things:
; %1 = trunc i64 %iv to i32
; This indicates that the %iv is truncated to i32. We can then check the loop
; guard is a signed i32:
; %cmp.sgt = icmp sgt i32 %n, 0
; and successfully vectorize the case without a runtime-check.
define i32 @select_icmp_const_truncated_iv_widened_exit(ptr %a, i32 %n) {
; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_widened_exit
; CHECK-NOT: vector.body:
;
entry:
%cmp.sgt = icmp sgt i32 %n, 0
br i1 %cmp.sgt, label %for.body.preheader, label %exit

for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body

for.body: ; preds = %for.body.preheader, %for.body
%iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ]
%rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv
%0 = load i64, ptr %arrayidx, align 8
%cmp = icmp sgt i64 %0, 3
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %wide.trip.count
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body, %entry
%rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
ret i32 %rdx.lcssa
}

; This test can theoretically be vectorized without a runtime-check, by
; pattern-matching on the constructs that are introduced by IndVarSimplify.
; We can check two things:
; %1 = trunc i64 %iv to i32
; This indicates that the %iv is truncated to i32. We can then check the loop
; exit condition, which compares to a constant that fits within i32:
; %exitcond.not = icmp eq i64 %inc, 20000
; and successfully vectorize the case without a runtime-check.
define i32 @select_icmp_const_truncated_iv_const_exit(ptr %a) {
; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_const_exit
; CHECK-NOT: vector.body:
;
entry:
br label %for.body

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv
%0 = load i64, ptr %arrayidx, align 8
%cmp = icmp sgt i64 %0, 3
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, 20000
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body
ret i32 %spec.select
}

; Without loop guard, the maximum constant trip count that can be vectorized is
; the signed maximum value of reduction type.
define i32 @select_fcmp_max_valid_const_ub(ptr %a) {
; CHECK-LABEL: define i32 @select_fcmp_max_valid_const_ub
; CHECK-NOT: vector.body:
;
entry:
br label %for.body

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%0 = load float, ptr %arrayidx, align 4
%cmp = fcmp fast olt float %0, 0.000000e+00
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, 2147483648
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body
ret i32 %spec.select
}

; Negative tests

; This test can theoretically be vectorized, but only with a runtime-check.
; The construct that are introduced by IndVarSimplify is:
; %1 = trunc i64 %iv to i32
; However, the loop guard is an i64:
; %cmp.sgt = icmp sgt i64 %n, 0
; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the
; sentinel value), and need a runtime-check to vectorize this case.
define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit(ptr %a, i64 %n) {
; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit
; CHECK-NOT: vector.body:
;
entry:
%cmp.sgt = icmp sgt i64 %n, 0
br i1 %cmp.sgt, label %for.body, label %exit

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%cmp = icmp sgt i32 %0, 3
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body, %entry
%rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
ret i32 %rdx.lcssa
}

; This test can theoretically be vectorized, but only with a runtime-check.
; The construct that are introduced by IndVarSimplify is:
; %1 = trunc i64 %iv to i32
; However, the loop guard is unsigned:
; %cmp.not = icmp eq i32 %n, 0
; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the
; sentinel value), and need a runtime-check to vectorize this case.
define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard(ptr %a, i32 %n) {
; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard
; CHECK-NOT: vector.body:
;
entry:
%cmp.not = icmp eq i32 %n, 0
br i1 %cmp.not, label %exit, label %for.body.preheader

for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body

for.body: ; preds = %for.body.preheader, %for.body
%iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ]
%rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%cmp1 = icmp sgt i32 %0, 3
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp1, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %wide.trip.count
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body, %entry
%rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
ret i32 %rdx.lcssa
}

; This test cannot be vectorized, even with a runtime check.
; The construct that are introduced by IndVarSimplify is:
; %1 = trunc i64 %iv to i32
; However, the loop exit condition is a constant that overflows i32:
; %exitcond.not = icmp eq i64 %inc, 4294967294
; Hence, the i32 will most certainly wrap and hit the sentinel value, and we
; cannot vectorize this case.
define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound(ptr %a) {
; CHECK-LABEL: define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound
; CHECK-NOT: vector.body:
;
entry:
br label %for.body

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 2147483646, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%cmp = icmp sgt i32 %0, 3
%conv = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %conv, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, 4294967294
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body
ret i32 %spec.select
}

; Forbidding vectorization of the FindLastIV pattern involving a truncated
; induction variable in the absence of any loop guard.
define i32 @not_vectorized_select_iv_icmp_no_guard(ptr %a, ptr %b, i32 %start, i32 %n) {
; CHECK-LABEL: define i32 @not_vectorized_select_iv_icmp_no_guard
; CHECK-NOT: vector.body:
;
entry:
%wide.trip.count = zext i32 %n to i64
br label %for.body

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ %start, %entry ], [ %cond, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv
%1 = load i32, ptr %arrayidx2, align 4
%cmp = icmp sgt i32 %0, %1
%2 = trunc i64 %iv to i32
%cond = select i1 %cmp, i32 %2, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %wide.trip.count
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body
ret i32 %cond
}

; Without loop guard, when the constant trip count exceeds the maximum signed
; value of the reduction type, truncation may cause overflow. Therefore,
; vectorizer is unable to guarantee that the induction variable is monotonic
; increasing.
define i32 @not_vectorized_select_fcmp_invalid_const_ub(ptr %a) {
; CHECK-LABEL: define i32 @not_vectorized_select_fcmp_invalid_const_ub
; CHECK-NOT: vector.body:
;
entry:
br label %for.body

for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ]
%arrayidx = getelementptr inbounds float, ptr %a, i64 %iv
%0 = load float, ptr %arrayidx, align 4
%cmp = fcmp fast olt float %0, 0.000000e+00
%1 = trunc i64 %iv to i32
%spec.select = select i1 %cmp, i32 %1, i32 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, 2147483649
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body
ret i32 %spec.select
}

; Even with loop guard protection, if the destination type of the truncation
; instruction is smaller than the trip count type before extension, overflow
; could still occur.
define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount(ptr %a, ptr %b, i16 %start, i32 %n) {
; CHECK-LABEL: define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount
; CHECK-NOT: vector.body:
;
entry:
%cmp9 = icmp sgt i32 %n, 0
br i1 %cmp9, label %for.body.preheader, label %exit

for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body

for.body: ; preds = %for.body.preheader, %for.body
%iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ]
%rdx = phi i16 [ %start, %for.body.preheader ], [ %cond, %for.body ]
%arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv
%0 = load i32, ptr %arrayidx, align 4
%arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv
%1 = load i32, ptr %arrayidx2, align 4
%cmp3 = icmp sgt i32 %0, %1
%2 = trunc i64 %iv to i16
%cond = select i1 %cmp3, i16 %2, i16 %rdx
%inc = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %inc, %wide.trip.count
br i1 %exitcond.not, label %exit, label %for.body

exit: ; preds = %for.body, %entry
%rdx.0.lcssa = phi i16 [ %start, %entry ], [ %cond, %for.body ]
ret i16 %rdx.0.lcssa
}
Loading