Skip to content

[mlir][linalg] Add an e2e test for linalg.matmul to ArmSME #72144

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 23, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions mlir/test/Integration/Dialect/Linalg/CPU/ArmSME/matmul.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
// RUN: mlir-opt %s \
// RUN: -transform-interpreter -test-transform-dialect-erase-schedule \
// RUN: -canonicalize \
// RUN: -enable-arm-streaming="streaming-mode=streaming-locally za-mode=new-za" \
// RUN: -convert-vector-to-arm-sme -convert-arm-sme-to-scf \
// RUN: -convert-vector-to-scf -cse -arm-sve-legalize-vector-storage \
// RUN: -convert-arm-sme-to-llvm \
// RUN: -convert-vector-to-llvm=enable-arm-sve \
// RUN: -cse -canonicalize -allocate-arm-sme-tiles -test-lower-to-llvm | \
// RUN: %mcr_aarch64_cmd \
// RUN: -e=main -entry-point-result=void \
// RUN: -march=aarch64 -mattr="+sve,+sme" \
// RUN: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%arm_sme_abi_shlib | \
// RUN: FileCheck %s

func.func @matmul(%A : tensor<?x?xf32>, %B : tensor<?x?xf32>, %C : tensor<?x?xf32>) {
%res = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C: tensor<?x?xf32>) -> tensor<?x?xf32>
%xf = tensor.cast %res : tensor<?x?xf32> to tensor<*xf32>
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()
return
}

func.func @main() attributes { enable_arm_streaming_ignore } {
%c0 = arith.constant 0 : i32
%c7 = arith.constant 7 : index

%A = arith.constant dense<[
[ 1., 8., 15., 22., 29., 36., 43., 50., 57., 64., 71., 78., 85.],
[ 2., 9., 16., 23., 30., 37., 44., 51., 58., 65., 72., 79., 86.],
[ 3., 10., 17., 24., 31., 38., 45., 52., 59., 66., 73., 80., 87.],
[ 4., 11., 18., 25., 32., 39., 46., 53., 60., 67., 74., 81., 88.],
[ 5., 12., 19., 26., 33., 40., 47., 54., 61., 68., 75., 82., 89.],
[ 6., 13., 20., 27., 34., 41., 48., 55., 62., 69., 76., 83., 90.],
[ 7., 14., 21., 28., 35., 42., 49., 56., 63., 70., 77., 84., 91.]
]> : tensor<7x13xf32>

%B_init = tensor.empty() : tensor<13x7xf32>
%B = linalg.transpose ins(%A: tensor<7x13xf32>)
outs(%B_init: tensor<13x7xf32>) permutation = [1, 0]

%A_dyn = tensor.cast %A : tensor<7x13xf32> to tensor<?x?xf32>
%B_dyn = tensor.cast %B : tensor<13x7xf32> to tensor<?x?xf32>

%C_init = bufferization.alloc_tensor(%c7, %c7) : tensor<?x?xf32>
%C = linalg.fill ins(%c0 : i32) outs(%C_init : tensor<?x?xf32>) -> tensor<?x?xf32>

// CHECK: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [7, 7] strides = [7, 1] data =
// CHECK: [32955, 33514, 34073, 34632, 35191, 35750, 36309]
// CHECK: [33514, 34086, 34658, 35230, 35802, 36374, 36946]
// CHECK: [34073, 34658, 35243, 35828, 36413, 36998, 37583]
// CHECK: [34632, 35230, 35828, 36426, 37024, 37622, 38220]
// CHECK: [35191, 35802, 36413, 37024, 37635, 38246, 38857]
// CHECK: [35750, 36374, 36998, 37622, 38246, 38870, 39494]
// CHECK: [36309, 36946, 37583, 38220, 38857, 39494, 40131]
call @matmul(%A_dyn, %B_dyn, %C) : (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> ()

return
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module : !transform.any_op {transform.consumed}) {
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module
: (!transform.any_op) -> !transform.any_op

// Step 1: Tile for size [4] x [4], which corresponds to SVLs x SVLs, where
// SVLs is the number of 32-bit elements in a vector of SVL bits.
%tiled_linalg_op, %loops:3 = transform.structured.tile_using_for %matmul[[4], [4], 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)

// Step 2: Vectorize.
transform.structured.vectorize %tiled_linalg_op vector_sizes [[4], [4], 1]
: !transform.any_op

// Step 3: Bufferize ahead of TransferReadDropUnitDimsPattern, which
// currently only supports memrefs.
%bufferize = transform.bufferization.one_shot_bufferize %module
{bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op

%func = transform.structured.match ops{["func.func"]} in %bufferize
: (!transform.any_op) -> !transform.any_op

// Step 4: Lower vector.multi_reduction to vector.contract (+ some helpful patterns).
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_masked_transfers
transform.apply_patterns.vector.transfer_permutation_patterns
transform.apply_patterns.vector.reduction_to_contract
} : !transform.any_op

// Step 5: Lower vector.contract to vector.outerproduct. Also drop unit
// dims, specifically to prevent vector.transfer_read of vector<[4]x1xf32>,
// which can't be lowered in generic path.
transform.apply_patterns to %func {
transform.apply_patterns.vector.lower_contraction lowering_strategy = "outerproduct"
transform.apply_patterns.vector.lower_masks
transform.apply_patterns.vector.rank_reducing_subview_patterns
} : !transform.any_op

transform.yield
}
}

func.func private @printMemrefF32(%ptr : tensor<*xf32>)