-
Notifications
You must be signed in to change notification settings - Fork 14.3k
Fix rsqrt inaccuracies. #88707
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix rsqrt inaccuracies. #88707
Conversation
The current lowering has issues with large/subnormal values. This po XLA's lowering and was verified using XLA's test suite and the MLIR-based emitters. This updates llvm#88691 to also update the correctness test for rsqrt(0). I checked C++ and Python, they both agree the result should be (inf, nan). Updated the correctness test to match this.
@llvm/pr-subscribers-mlir-complex @llvm/pr-subscribers-mlir Author: Johannes Reifferscheid (jreiffers) ChangesThe current lowering has issues with large/subnormal values. This po XLA's lowering and was verified using XLA's test suite and the MLIR-based emitters. This updates #88691 to also update the correctness test for rsqrt(0). I checked C++ and Python, they both agree the result should be (inf, nan). Updated the correctness test to match this. Full diff: https://github.com/llvm/llvm-project/pull/88707.diff 3 Files Affected:
diff --git a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
index 49eb575212ffc1..3ebee9baff31bd 100644
--- a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
+++ b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
@@ -27,9 +27,11 @@ using namespace mlir;
namespace {
-// Returns the absolute value or its square root.
+enum class AbsFn { abs, sqrt, rsqrt };
+
+// Returns the absolute value, its square root or its reciprocal square root.
Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf,
- ImplicitLocOpBuilder &b, bool returnSqrt = false) {
+ ImplicitLocOpBuilder &b, AbsFn fn = AbsFn::abs) {
Value one = b.create<arith::ConstantOp>(real.getType(),
b.getFloatAttr(real.getType(), 1.0));
@@ -43,7 +45,13 @@ Value computeAbs(Value real, Value imag, arith::FastMathFlags fmf,
Value ratioSqPlusOne = b.create<arith::AddFOp>(ratioSq, one, fmf);
Value result;
- if (returnSqrt) {
+ if (fn == AbsFn::rsqrt) {
+ ratioSqPlusOne = b.create<math::RsqrtOp>(ratioSqPlusOne, fmf);
+ min = b.create<math::RsqrtOp>(min, fmf);
+ max = b.create<math::RsqrtOp>(max, fmf);
+ }
+
+ if (fn == AbsFn::sqrt) {
Value quarter = b.create<arith::ConstantOp>(
real.getType(), b.getFloatAttr(real.getType(), 0.25));
// sqrt(sqrt(a*b)) would avoid the pow, but will overflow more easily.
@@ -863,7 +871,7 @@ struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> {
Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
- Value absSqrt = computeAbs(real, imag, fmf, b, /*returnSqrt=*/true);
+ Value absSqrt = computeAbs(real, imag, fmf, b, AbsFn::sqrt);
Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
Value sqrtArg = b.create<arith::MulFOp>(argArg, half, fmf);
Value cos = b.create<math::CosOp>(sqrtArg, fmf);
@@ -1147,18 +1155,74 @@ struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> {
LogicalResult
matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
- mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter);
+ mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto type = cast<ComplexType>(adaptor.getComplex().getType());
auto elementType = cast<FloatType>(type.getElementType());
- Value c = builder.create<arith::ConstantOp>(
- elementType, builder.getFloatAttr(elementType, -0.5));
- Value d = builder.create<arith::ConstantOp>(
- elementType, builder.getFloatAttr(elementType, 0));
+ arith::FastMathFlags fmf = op.getFastMathFlagsAttr().getValue();
+
+ auto cst = [&](APFloat v) {
+ return b.create<arith::ConstantOp>(elementType,
+ b.getFloatAttr(elementType, v));
+ };
+ const auto &floatSemantics = elementType.getFloatSemantics();
+ Value zero = cst(APFloat::getZero(floatSemantics));
+ Value inf = cst(APFloat::getInf(floatSemantics));
+ Value negHalf = b.create<arith::ConstantOp>(
+ elementType, b.getFloatAttr(elementType, -0.5));
+ Value nan = cst(APFloat::getNaN(floatSemantics));
+
+ Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex());
+ Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex());
+ Value absRsqrt = computeAbs(real, imag, fmf, b, AbsFn::rsqrt);
+ Value argArg = b.create<math::Atan2Op>(imag, real, fmf);
+ Value rsqrtArg = b.create<arith::MulFOp>(argArg, negHalf, fmf);
+ Value cos = b.create<math::CosOp>(rsqrtArg, fmf);
+ Value sin = b.create<math::SinOp>(rsqrtArg, fmf);
+
+ Value resultReal = b.create<arith::MulFOp>(absRsqrt, cos, fmf);
+ Value resultImag = b.create<arith::MulFOp>(absRsqrt, sin, fmf);
+
+ if (!arith::bitEnumContainsAll(fmf, arith::FastMathFlags::nnan |
+ arith::FastMathFlags::ninf)) {
+ Value negOne = b.create<arith::ConstantOp>(
+ elementType, b.getFloatAttr(elementType, -1));
+
+ Value realSignedZero = b.create<math::CopySignOp>(zero, real, fmf);
+ Value imagSignedZero = b.create<math::CopySignOp>(zero, imag, fmf);
+ Value negImagSignedZero =
+ b.create<arith::MulFOp>(negOne, imagSignedZero, fmf);
- rewriter.replaceOp(op,
- {powOpConversionImpl(builder, type, adaptor.getComplex(),
- c, d, op.getFastmath())});
+ Value absReal = b.create<math::AbsFOp>(real, fmf);
+ Value absImag = b.create<math::AbsFOp>(imag, fmf);
+
+ Value absImagIsInf =
+ b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absImag, inf, fmf);
+ Value realIsNan =
+ b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real, fmf);
+ Value realIsInf =
+ b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, absReal, inf, fmf);
+ Value inIsNanInf = b.create<arith::AndIOp>(absImagIsInf, realIsNan);
+
+ Value resultIsZero = b.create<arith::OrIOp>(inIsNanInf, realIsInf);
+
+ resultReal =
+ b.create<arith::SelectOp>(resultIsZero, realSignedZero, resultReal);
+ resultImag = b.create<arith::SelectOp>(resultIsZero, negImagSignedZero,
+ resultImag);
+ }
+
+ Value isRealZero =
+ b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero, fmf);
+ Value isImagZero =
+ b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero, fmf);
+ Value isZero = b.create<arith::AndIOp>(isRealZero, isImagZero);
+
+ resultReal = b.create<arith::SelectOp>(isZero, inf, resultReal);
+ resultImag = b.create<arith::SelectOp>(isZero, nan, resultImag);
+
+ rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal,
+ resultImag);
return success();
}
};
diff --git a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
index e0e7cdadd317d2..8b4ea9777f7976 100644
--- a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
+++ b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
@@ -837,6 +837,21 @@ func.func @complex_rsqrt(%arg: complex<f32>) -> complex<f32> {
return %rsqrt : complex<f32>
}
+// CHECK-COUNT-5: arith.select
+// CHECK-NOT: arith.select
+
+// -----
+
+// CHECK-LABEL: func @complex_rsqrt_nnan_ninf
+// CHECK-SAME: %[[ARG:.*]]: complex<f32>
+func.func @complex_rsqrt_nnan_ninf(%arg: complex<f32>) -> complex<f32> {
+ %sqrt = complex.rsqrt %arg fastmath<nnan,ninf> : complex<f32>
+ return %sqrt : complex<f32>
+}
+
+// CHECK-COUNT-3: arith.select
+// CHECK-NOT: arith.select
+
// -----
// CHECK-LABEL: func.func @complex_angle
@@ -2103,4 +2118,4 @@ func.func @complex_tanh_with_fmf(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[NUM:.*]] = complex.create %[[TANH_A]], %[[TAN_B]] : complex<f32>
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[MUL:.*]] = arith.mulf %[[TANH_A]], %[[TAN_B]] fastmath<nnan,contract> : f32
-// CHECK: %[[DENOM:.*]] = complex.create %[[ONE]], %[[MUL]] : complex<f32>
\ No newline at end of file
+// CHECK: %[[DENOM:.*]] = complex.create %[[ONE]], %[[MUL]] : complex<f32>
diff --git a/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir b/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
index 441f7500538f7e..b0e414d157268b 100644
--- a/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
+++ b/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
@@ -242,7 +242,7 @@ func.func @entry() {
// CHECK-NEXT: 0.321
// CHECK-NEXT: -0.776
(0.0, 0.0),
- // CHECK-NEXT: nan
+ // CHECK-NEXT: inf
// CHECK-NEXT: nan
(0.0, 1.0),
// CHECK-NEXT: 0.707
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe put "Reland" in the title?
Also, seems the description has a typo now, "po" -> "ports".
The current lowering has issues with large/subnormal values. This po XLA's lowering and was verified using XLA's test suite and the MLIR-based emitters. This updates llvm#88691 to also update the correctness test for rsqrt(0). I checked C++ and Python, they both agree the result should be (inf, nan). Updated the correctness test to match this.
The current lowering has issues with large/subnormal values. This po XLA's lowering and was verified using XLA's test suite and the MLIR-based emitters. This updates llvm#88691 to also update the correctness test for rsqrt(0). I checked C++ and Python, they both agree the result should be (inf, nan). Updated the correctness test to match this.
The current lowering has issues with large/subnormal values. This po XLA's lowering and was verified using XLA's test suite and the MLIR-based emitters.
This updates #88691 to also update the correctness test for rsqrt(0). I checked C++ and Python, they both agree the result should be (inf, nan). Updated the correctness test to match this.