|
| 1 | +# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +from __future__ import absolute_import |
| 14 | + |
| 15 | +import os |
| 16 | +import io |
| 17 | +import numpy as np |
| 18 | +import pytest |
| 19 | +from six.moves.urllib.parse import urlparse |
| 20 | +import sagemaker |
| 21 | +from sagemaker.session import Session |
| 22 | +import sagemaker.amazon.common as smac |
| 23 | +from sagemaker.image_uris import retrieve |
| 24 | +from sagemaker.utils import unique_name_from_base |
| 25 | +from sagemaker.model_card import ( |
| 26 | + ModelCard, |
| 27 | + ModelOverview, |
| 28 | + TrainingDetails, |
| 29 | + ModelCardStatusEnum, |
| 30 | +) |
| 31 | +from tests.integ import ( |
| 32 | + MODEL_CARD_DEFAULT_TIMEOUT_MINUTES, |
| 33 | +) |
| 34 | +from tests.integ.timeout import timeout, timeout_and_delete_model_by_name |
| 35 | + |
| 36 | + |
| 37 | +ROLE = "SageMakerRole" |
| 38 | + |
| 39 | + |
| 40 | +@pytest.fixture(scope="module", name="binary_classifier") |
| 41 | +def binary_classifier_fixture( |
| 42 | + sagemaker_session: Session, |
| 43 | + cpu_instance_type: str, |
| 44 | +): |
| 45 | + """Manage the model required for the model card integration test. |
| 46 | +
|
| 47 | + Args: |
| 48 | + sagemaker_session (Session): A SageMaker Session |
| 49 | + object, used for SageMaker interactions. |
| 50 | + cpu_instance_type (_type_): Instance type used for training model |
| 51 | + and deploy endpoint. |
| 52 | + """ |
| 53 | + model_name = unique_name_from_base("integ-test-binary-classifier-endpoint") |
| 54 | + with timeout_and_delete_model_by_name( |
| 55 | + model_name=model_name, |
| 56 | + sagemaker_session=sagemaker_session, |
| 57 | + minutes=MODEL_CARD_DEFAULT_TIMEOUT_MINUTES, |
| 58 | + ): |
| 59 | + # upload data |
| 60 | + raw_data = ( |
| 61 | + (0.5, 0), |
| 62 | + (0.75, 0), |
| 63 | + (1.0, 0), |
| 64 | + (1.25, 0), |
| 65 | + (1.50, 0), |
| 66 | + (1.75, 0), |
| 67 | + (2.0, 0), |
| 68 | + (2.25, 1), |
| 69 | + (2.5, 0), |
| 70 | + (2.75, 1), |
| 71 | + (3.0, 0), |
| 72 | + (3.25, 1), |
| 73 | + (3.5, 0), |
| 74 | + (4.0, 1), |
| 75 | + (4.25, 1), |
| 76 | + (4.5, 1), |
| 77 | + (4.75, 1), |
| 78 | + (5.0, 1), |
| 79 | + (5.5, 1), |
| 80 | + ) |
| 81 | + training_data = np.array(raw_data).astype("float32") |
| 82 | + labels = training_data[:, 1] |
| 83 | + |
| 84 | + bucket = sagemaker_session.default_bucket() |
| 85 | + prefix = "integ-test-data/model-card/binary-classifier" |
| 86 | + |
| 87 | + buf = io.BytesIO() |
| 88 | + smac.write_numpy_to_dense_tensor(buf, training_data, labels) |
| 89 | + buf.seek(0) |
| 90 | + |
| 91 | + sagemaker_session.boto_session.resource( |
| 92 | + "s3", region_name=sagemaker_session.boto_region_name |
| 93 | + ).Bucket(bucket).Object(os.path.join(prefix, "train")).upload_fileobj(buf) |
| 94 | + |
| 95 | + # train model |
| 96 | + s3_train_data = f"s3://{bucket}/{prefix}/train" |
| 97 | + output_location = f"s3://{bucket}/{prefix}/output" |
| 98 | + container = retrieve("linear-learner", sagemaker_session.boto_session.region_name) |
| 99 | + estimator = sagemaker.estimator.Estimator( |
| 100 | + container, |
| 101 | + role=ROLE, |
| 102 | + instance_count=1, |
| 103 | + instance_type=cpu_instance_type, |
| 104 | + output_path=output_location, |
| 105 | + sagemaker_session=sagemaker_session, |
| 106 | + ) |
| 107 | + estimator.set_hyperparameters( |
| 108 | + feature_dim=2, mini_batch_size=10, predictor_type="binary_classifier" |
| 109 | + ) |
| 110 | + estimator.fit({"train": s3_train_data}) |
| 111 | + |
| 112 | + model = estimator.create_model(name=model_name) |
| 113 | + container_def = model.prepare_container_def() |
| 114 | + sagemaker_session.create_model(model_name, ROLE, container_def) |
| 115 | + |
| 116 | + # Yield to run the integration tests |
| 117 | + yield model_name, estimator.latest_training_job.name |
| 118 | + |
| 119 | + # Cleanup resources |
| 120 | + sagemaker_session.delete_model(model_name) |
| 121 | + |
| 122 | + # Validate resource cleanup |
| 123 | + with pytest.raises(Exception) as exception: |
| 124 | + sagemaker_session.sagemaker_client.describe_model(ModelName=model_name) |
| 125 | + assert "Could not find model" in str(exception.value) |
| 126 | + |
| 127 | + |
| 128 | +def test_model_card_create_read_update_and_delete( |
| 129 | + sagemaker_session, |
| 130 | + binary_classifier, |
| 131 | +): |
| 132 | + model_name, training_job_name = binary_classifier |
| 133 | + |
| 134 | + with timeout(minutes=MODEL_CARD_DEFAULT_TIMEOUT_MINUTES): |
| 135 | + model_card_name = unique_name_from_base("model-card") |
| 136 | + |
| 137 | + model_overview = ModelOverview.from_model_name( |
| 138 | + model_name=model_name, |
| 139 | + sagemaker_session=sagemaker_session, |
| 140 | + ) |
| 141 | + assert model_overview.model_id |
| 142 | + |
| 143 | + training_details1 = TrainingDetails.from_training_job_name( |
| 144 | + training_job_name=training_job_name, |
| 145 | + sagemaker_session=sagemaker_session, |
| 146 | + ) |
| 147 | + assert training_details1.training_job_details.training_arn |
| 148 | + training_details2 = TrainingDetails.from_model_overview( |
| 149 | + model_overview=model_overview, |
| 150 | + sagemaker_session=sagemaker_session, |
| 151 | + ) |
| 152 | + assert ( |
| 153 | + training_details1.training_job_details.training_arn |
| 154 | + == training_details2.training_job_details.training_arn |
| 155 | + ) |
| 156 | + assert ( |
| 157 | + training_details1.training_job_details.training_environment.container_image[0] |
| 158 | + == training_details2.training_job_details.training_environment.container_image[0] |
| 159 | + ) |
| 160 | + assert len(training_details1.training_job_details.training_metrics) == len( |
| 161 | + training_details2.training_job_details.training_metrics |
| 162 | + ) |
| 163 | + |
| 164 | + card = ModelCard( |
| 165 | + name=model_card_name, |
| 166 | + status=ModelCardStatusEnum.DRAFT, |
| 167 | + model_overview=model_overview, |
| 168 | + training_details=training_details1, |
| 169 | + sagemaker_session=sagemaker_session, |
| 170 | + ) |
| 171 | + card.create() |
| 172 | + assert card.arn |
| 173 | + |
| 174 | + new_model_description = "the model card is updated." |
| 175 | + card.model_overview.model_description = new_model_description |
| 176 | + card.update() |
| 177 | + assert len(card.get_version_history()) == 2 |
| 178 | + |
| 179 | + card_copy = ModelCard.load( |
| 180 | + name=model_card_name, |
| 181 | + sagemaker_session=sagemaker_session, |
| 182 | + ) |
| 183 | + assert card_copy.arn == card.arn |
| 184 | + assert card_copy.model_overview.model_description == new_model_description |
| 185 | + |
| 186 | + # export job |
| 187 | + bucket = sagemaker_session.default_bucket() |
| 188 | + prefix = "integ-test-data/model-card" |
| 189 | + s3_output_path = f"s3://{bucket}/{prefix}/export" |
| 190 | + pdf_s3_url = card.export_pdf( |
| 191 | + export_job_name=f"export-{model_card_name}", s3_output_path=s3_output_path |
| 192 | + ) |
| 193 | + parsed_url = urlparse(pdf_s3_url) |
| 194 | + pdf_bucket = parsed_url.netloc |
| 195 | + pdf_key = parsed_url.path.lstrip("/") |
| 196 | + region = sagemaker_session.boto_region_name |
| 197 | + s3 = sagemaker_session.boto_session.client("s3", region_name=region) |
| 198 | + assert s3.list_objects_v2(Bucket=pdf_bucket, Prefix=pdf_key)["KeyCount"] == 1 |
| 199 | + |
| 200 | + # list export jobs |
| 201 | + assert len(card.list_export_jobs()["ModelCardExportJobSummaries"]) == 1 |
| 202 | + |
| 203 | + # clean resources |
| 204 | + s3.delete_object(Bucket=pdf_bucket, Key=pdf_key) |
| 205 | + card.delete() |
| 206 | + |
| 207 | + # Validate resource cleanup |
| 208 | + with pytest.raises(Exception) as exception: |
| 209 | + sagemaker_session.sagemaker_client.describe_model_card(ModelCardName=model_card_name) |
| 210 | + assert "does not exist" in str(exception.value) |
| 211 | + |
| 212 | + s3.get_object(Bucket=pdf_bucket, Key=pdf_key) |
| 213 | + assert "The specified key does not exist" in str(exception.value) |
0 commit comments