1
1
#include " binbcast.hpp"
2
2
3
- #include < array>
4
3
#include < cstddef>
5
4
#include < cstdint>
6
5
#include < sycl/sycl.hpp>
7
6
8
- #include " dpct/helper.hpp"
9
7
#include " ggml.h"
10
8
11
- template <float (*bin_op)(const float , const float ), typename src0_t , typename src1_t , typename dst_t >
12
- static __dpct_inline__ void k_bin_bcast_contiguous (const src0_t * __restrict__ src0, const src1_t * __restrict__ src1,
13
- dst_t * dst, std::size_t num_elements, const sycl::nd_item<1 > & it) {
14
- auto element_id = it.get_global_id (0 );
15
- auto global_range = it.get_global_range (0 );
16
- for (; element_id < num_elements; element_id += global_range) {
17
- auto src0_float_val = sycl::vec (src0[element_id]).template convert <float , sycl::rounding_mode::rte>();
18
- auto src1_float_val = sycl::vec (src1[element_id]).template convert <float , sycl::rounding_mode::rte>();
19
- float dst_val = bin_op (src0_float_val[0 ], src1_float_val[0 ]);
20
- auto val_to_store = sycl::vec (dst_val).template convert <dst_t , sycl::rounding_mode::rte>();
21
- dst[element_id] = val_to_store;
9
+ template <float (*bin_op)(const float , const float ), typename src0_t , typename src1_t , typename dst_t >
10
+ static void k_bin_bcast (const src0_t * src0, const src1_t * src1, dst_t * dst,
11
+ int ne0, int ne1, int ne2, int ne3,
12
+ int ne10, int ne11, int ne12, int ne13,
13
+ /* int s0, */ int s1, int s2, int s3,
14
+ /* int s00,*/ int s01, int s02, int s03,
15
+ /* int s10,*/ int s11, int s12, int s13,
16
+ const sycl::nd_item<3 > &item_ct1) {
17
+ const int i0s = item_ct1.get_local_range (2 ) * item_ct1.get_group (2 ) +
18
+ item_ct1.get_local_id (2 );
19
+ const int i1 = (item_ct1.get_local_range (1 ) * item_ct1.get_group (1 ) +
20
+ item_ct1.get_local_id (1 ));
21
+ const int i2 = (item_ct1.get_local_range (0 ) * item_ct1.get_group (0 ) +
22
+ item_ct1.get_local_id (0 )) /
23
+ ne3;
24
+ const int i3 = (item_ct1.get_local_range (0 ) * item_ct1.get_group (0 ) +
25
+ item_ct1.get_local_id (0 )) %
26
+ ne3;
27
+
28
+ if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
29
+ return ;
30
+ }
31
+
32
+ const int i11 = i1 % ne11;
33
+ const int i12 = i2 % ne12;
34
+ const int i13 = i3 % ne13;
35
+
36
+ const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
37
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
38
+ const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
39
+
40
+ const src0_t * src0_row = src0 + i_src0;
41
+ const src1_t * src1_row = src1 + i_src1;
42
+ dst_t * dst_row = dst + i_dst;
43
+
44
+ for (int i0 = i0s; i0 < ne0;
45
+ i0 += item_ct1.get_local_range (2 ) * item_ct1.get_group_range (2 )) {
46
+ const int i10 = i0 % ne10;
47
+ dst_row[i0] = (dst_t )bin_op (src0 ? (float )src0_row[i0] : 0 .0f , (float )src1_row[i10]);
22
48
}
23
49
}
24
50
25
- template <float (*bin_op)(const float , const float ), typename src0_t , typename src1_t , typename dst_t >
26
- static __dpct_inline__ void k_bin_bcast (const src0_t * __restrict__ src0, const src1_t * __restrict__ src1, dst_t * dst,
27
- int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13,
28
- int s0, int s1, int s2, int s3, int s00, int s01, int s02, int s03, int s10,
29
- int s11, int s12, int s13, std::size_t num_dst_elements,
30
- const sycl::nd_item<1 > & item_ct1) {
31
- auto calculate_logical_index =
32
- [](const std::array<int , 4 > & dims, std::size_t element_id) __attribute__ ((always_inline))->std ::array<int , 4 > {
33
- std::array<int , 4 > logical_index;
34
- #pragma unroll(4)
35
- for (int i = 3 ; i >= 0 ; i--) {
36
- logical_index[i] = element_id % dims[i];
37
- element_id /= dims[i];
38
- }
39
- return logical_index;
40
- };
41
-
42
- auto calculate_index = [](const std::array<int , 4 > & dims, const std::array<int , 4 > & strides,
43
- const std::array<int , 4 > & indices) __attribute__ ((always_inline))
44
- ->std ::size_t {
45
- std::size_t index = 0 ;
46
- #pragma unroll(4)
47
- for (int i = 0 ; i < 4 ; i++) {
48
- auto index_i = indices[i];
49
- if (indices[i] >= dims[i]) {
50
- index_i = indices[i] % dims[i];
51
- }
52
- index += strides[i] * index_i;
53
- }
54
- return index;
55
- };
56
-
57
- auto element_id = item_ct1.get_global_id (0 );
58
- for (; element_id < num_dst_elements; element_id += item_ct1.get_global_range (0 )) {
59
- auto logical_index = calculate_logical_index ({ ne3, ne2, ne1, ne0 }, element_id);
60
- auto src_0_index = calculate_index ({ ne3, ne2, ne1, ne0 }, { s03, s02, s01, s00 }, logical_index);
61
- auto src_1_index = calculate_index ({ ne13, ne12, ne11, ne10 }, { s13, s12, s11, s10 }, logical_index);
62
- auto dst_index = calculate_index ({ ne3, ne2, ne1, ne0 }, { s3, s2, s1, s0 }, logical_index);
63
- auto src0_float_val = sycl::vec (src0[src_0_index]).template convert <float , sycl::rounding_mode::rte>();
64
- auto src1_float_val = sycl::vec (src1[src_1_index]).template convert <float , sycl::rounding_mode::rte>();
65
- float dst_val = bin_op (src0_float_val[0 ], src1_float_val[0 ]);
66
- auto val_to_store = sycl::vec (dst_val).template convert <dst_t , sycl::rounding_mode::rte>();
67
- dst[dst_index] = val_to_store;
51
+ template <float (*bin_op)(const float , const float ), typename src0_t , typename src1_t , typename dst_t >
52
+ static void k_bin_bcast_unravel (const src0_t * src0, const src1_t * src1, dst_t * dst,
53
+ int ne0, int ne1, int ne2, int ne3,
54
+ int ne10, int ne11, int ne12, int ne13,
55
+ /* int s0, */ int s1, int s2, int s3,
56
+ /* int s00,*/ int s01, int s02, int s03,
57
+ /* int s10,*/ int s11, int s12, int s13,
58
+ const sycl::nd_item<3 > &item_ct1) {
59
+
60
+ const int i = item_ct1.get_local_range (2 ) * item_ct1.get_group (2 ) +
61
+ item_ct1.get_local_id (2 );
62
+
63
+ const int i3 = i/(ne2*ne1*ne0);
64
+ const int i2 = (i/(ne1*ne0)) % ne2;
65
+ const int i1 = (i/ne0) % ne1;
66
+ const int i0 = i % ne0;
67
+
68
+ if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
69
+ return ;
68
70
}
71
+
72
+ const int i11 = i1 % ne11;
73
+ const int i12 = i2 % ne12;
74
+ const int i13 = i3 % ne13;
75
+
76
+ const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
77
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
78
+ const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
79
+
80
+ const src0_t * src0_row = src0 + i_src0;
81
+ const src1_t * src1_row = src1 + i_src1;
82
+ dst_t * dst_row = dst + i_dst;
83
+
84
+ const int i10 = i0 % ne10;
85
+ dst_row[i0] = (dst_t )bin_op (src0 ? (float )src0_row[i0] : 0 .0f , (float )src1_row[i10]);
69
86
}
70
87
71
- template <float (*bin_op)(const float , const float )> struct bin_bcast_sycl {
88
+
89
+ template <float (*bin_op)(const float , const float )>
90
+ struct bin_bcast_sycl {
72
91
template <typename src0_t , typename src1_t , typename dst_t >
73
92
void operator ()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
74
93
const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
@@ -77,73 +96,165 @@ template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
77
96
const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
78
97
const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
79
98
const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
80
- auto check_bcast_required = [](const std::array<int64_t , 4 > & src_dims,
81
- const std::array<int64_t , 4 > & dst_dims) -> bool {
99
+ int nr0 = ne10 / ne0;
100
+ int nr1 = ne11/ne1;
101
+ int nr2 = ne12/ne2;
102
+ int nr3 = ne13/ne3;
103
+
104
+ int nr[4 ] = { nr0, nr1, nr2, nr3 };
105
+
106
+ // collapse dimensions until first broadcast dimension
107
+ int64_t cne[] = {ne0, ne1, ne2, ne3};
108
+ int64_t cne0[] = {ne00, ne01, ne02, ne03};
109
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
110
+ size_t cnb[] = {nb0, nb1, nb2, nb3};
111
+ size_t cnb0[] = {nb00, nb01, nb02, nb03};
112
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
113
+ auto collapse = [](int64_t cne[]) {
114
+ cne[0 ] *= cne[1 ];
115
+ cne[1 ] = cne[2 ];
116
+ cne[2 ] = cne[3 ];
117
+ cne[3 ] = 1 ;
118
+ };
119
+
120
+ auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
121
+ cnb[1 ] *= cne[1 ];
122
+ cnb[2 ] *= cne[2 ];
123
+ cnb[3 ] *= cne[3 ];
124
+ };
125
+
126
+ if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
82
127
for (int i = 0 ; i < 4 ; i++) {
83
- if (dst_dims[i] > src_dims[i]) {
84
- return true ;
128
+ if (nr[i] != 1 ) {
129
+ break ;
130
+ }
131
+ if (i > 0 ) {
132
+ collapse_nb (cnb, cne);
133
+ collapse_nb (cnb0, cne0);
134
+ collapse_nb (cnb1, cne1);
135
+ collapse (cne);
136
+ collapse (cne0);
137
+ collapse (cne1);
85
138
}
86
139
}
87
- return false ;
88
- };
89
-
90
- dpct::has_capability_or_fail (stream->get_device (), { sycl::aspect::fp16 });
91
-
92
- GGML_ASSERT (nb0 % sizeof (dst_t ) == 0 );
93
- GGML_ASSERT (nb1 % sizeof (dst_t ) == 0 );
94
- GGML_ASSERT (nb2 % sizeof (dst_t ) == 0 );
95
- GGML_ASSERT (nb3 % sizeof (dst_t ) == 0 );
96
-
97
- GGML_ASSERT (nb00 % sizeof (src0_t ) == 0 );
98
- GGML_ASSERT (nb01 % sizeof (src0_t ) == 0 );
99
- GGML_ASSERT (nb02 % sizeof (src0_t ) == 0 );
100
- GGML_ASSERT (nb03 % sizeof (src0_t ) == 0 );
101
-
102
- GGML_ASSERT (nb10 % sizeof (src1_t ) == 0 );
103
- GGML_ASSERT (nb11 % sizeof (src1_t ) == 0 );
104
- GGML_ASSERT (nb12 % sizeof (src1_t ) == 0 );
105
- GGML_ASSERT (nb13 % sizeof (src1_t ) == 0 );
106
-
107
- // dst strides in number of elements
108
- size_t s0 = nb0 / sizeof (dst_t );
109
- size_t s1 = nb1 / sizeof (dst_t );
110
- size_t s2 = nb2 / sizeof (dst_t );
111
- size_t s3 = nb3 / sizeof (dst_t );
112
-
113
- // src1 strides in number of elements
114
- size_t s10 = nb10 / sizeof (src0_t );
115
- size_t s11 = nb11 / sizeof (src1_t );
116
- size_t s12 = nb12 / sizeof (src1_t );
117
- size_t s13 = nb13 / sizeof (src1_t );
118
-
119
- // src0 strides in number of elements
120
- size_t s00 = nb00 / sizeof (src0_t );
121
- size_t s01 = nb01 / sizeof (src0_t );
122
- size_t s02 = nb02 / sizeof (src0_t );
123
- size_t s03 = nb03 / sizeof (src0_t );
124
-
125
- std::size_t num_dst_elements = static_cast <std::size_t >(ne0) * static_cast <std::size_t >(ne1) *
126
- static_cast <std::size_t >(ne2) * static_cast <std::size_t >(ne3);
127
- std::size_t local_range = 256 ;
128
- std::size_t global_range = ceil_div (num_dst_elements, local_range) * local_range;
129
-
130
- bool needs_broadcasting = check_bcast_required ({ ne00, ne01, ne02, ne03 }, { ne0, ne1, ne2, ne3 }) ||
131
- check_bcast_required ({ ne10, ne11, ne12, ne13 }, { ne0, ne1, ne2, ne3 });
132
- bool all_contiguous = src0_is_contiguous && src1_is_contiguous && dst_is_contiguous;
133
-
134
- if (! needs_broadcasting && all_contiguous) {
135
- stream->submit ([&](sycl::handler & cgh) {
136
- cgh.parallel_for (sycl::nd_range<1 >({ global_range }, { local_range }), [=](sycl::nd_item<1 > it) {
137
- k_bin_bcast_contiguous<bin_op>(src0_dd, src1_dd, dst_dd, num_dst_elements, it);
138
- });
139
- });
140
- } else {
141
- stream->submit ([&](sycl::handler & cgh) {
142
- cgh.parallel_for (sycl::nd_range<1 >({ global_range }, { local_range }), [=](sycl::nd_item<1 > it) {
143
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, s0, s1,
144
- s2, s3, s00, s01, s02, s03, s10, s11, s12, s13, num_dst_elements, it);
145
- });
146
- });
140
+ }
141
+ {
142
+ int64_t ne0 = cne[0 ];
143
+ int64_t ne1 = cne[1 ];
144
+ int64_t ne2 = cne[2 ];
145
+ int64_t ne3 = cne[3 ];
146
+
147
+ int64_t ne10 = cne1[0 ];
148
+ int64_t ne11 = cne1[1 ];
149
+ int64_t ne12 = cne1[2 ];
150
+ int64_t ne13 = cne1[3 ];
151
+
152
+ size_t nb0 = cnb[0 ];
153
+ size_t nb1 = cnb[1 ];
154
+ size_t nb2 = cnb[2 ];
155
+ size_t nb3 = cnb[3 ];
156
+
157
+ size_t nb00 = cnb0[0 ];
158
+ size_t nb01 = cnb0[1 ];
159
+ size_t nb02 = cnb0[2 ];
160
+ size_t nb03 = cnb0[3 ];
161
+
162
+ size_t nb10 = cnb1[0 ];
163
+ size_t nb11 = cnb1[1 ];
164
+ size_t nb12 = cnb1[2 ];
165
+ size_t nb13 = cnb1[3 ];
166
+
167
+ size_t s0 = nb0 / sizeof (dst_t );
168
+ size_t s1 = nb1 / sizeof (dst_t );
169
+ size_t s2 = nb2 / sizeof (dst_t );
170
+ size_t s3 = nb3 / sizeof (dst_t );
171
+
172
+ size_t s10 = nb10 / sizeof (src1_t );
173
+ size_t s11 = nb11 / sizeof (src1_t );
174
+ size_t s12 = nb12 / sizeof (src1_t );
175
+ size_t s13 = nb13 / sizeof (src1_t );
176
+
177
+ size_t s00 = nb00 / sizeof (src0_t );
178
+ size_t s01 = nb01 / sizeof (src0_t );
179
+ size_t s02 = nb02 / sizeof (src0_t );
180
+ size_t s03 = nb03 / sizeof (src0_t );
181
+
182
+ GGML_UNUSED (s00);
183
+
184
+ GGML_ASSERT (nb0 % sizeof (dst_t ) == 0 );
185
+ GGML_ASSERT (nb1 % sizeof (dst_t ) == 0 );
186
+ GGML_ASSERT (nb2 % sizeof (dst_t ) == 0 );
187
+ GGML_ASSERT (nb3 % sizeof (dst_t ) == 0 );
188
+
189
+ GGML_ASSERT (nb00 % sizeof (src0_t ) == 0 );
190
+ GGML_ASSERT (nb01 % sizeof (src0_t ) == 0 );
191
+ GGML_ASSERT (nb02 % sizeof (src0_t ) == 0 );
192
+ GGML_ASSERT (nb03 % sizeof (src0_t ) == 0 );
193
+
194
+ GGML_ASSERT (nb10 % sizeof (src1_t ) == 0 );
195
+ GGML_ASSERT (nb11 % sizeof (src1_t ) == 0 );
196
+ GGML_ASSERT (nb12 % sizeof (src1_t ) == 0 );
197
+ GGML_ASSERT (nb13 % sizeof (src1_t ) == 0 );
198
+
199
+ GGML_ASSERT (s0 == 1 );
200
+ GGML_ASSERT (s10 == 1 );
201
+
202
+ const int block_size = 128 ;
203
+
204
+ int64_t hne0 = std::max (ne0/2LL , 1LL );
205
+
206
+ sycl::range<3 > block_dims (1 , 1 , 1 );
207
+ block_dims[2 ] = std::min<unsigned int >(hne0, block_size);
208
+ block_dims[1 ] = std::min<unsigned int >(
209
+ ne1, block_size / (unsigned int )block_dims[2 ]);
210
+ block_dims[0 ] = std::min (
211
+ std::min<unsigned int >(
212
+ ne2 * ne3, block_size / (unsigned int )block_dims[2 ] /
213
+ (unsigned int )block_dims[1 ]),
214
+ 64U );
215
+
216
+ sycl::range<3 > block_nums (
217
+ (ne2 * ne3 + block_dims[0 ] - 1 ) / block_dims[0 ],
218
+ (ne1 + block_dims[1 ] - 1 ) / block_dims[1 ],
219
+ (hne0 + block_dims[2 ] - 1 ) / block_dims[2 ]);
220
+
221
+ if (block_nums[0 ] > 65535 ) {
222
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
223
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1 ) / block_size;
224
+ {
225
+ dpct::has_capability_or_fail (stream->get_device (),
226
+ {sycl::aspect::fp16});
227
+
228
+ stream->parallel_for (
229
+ sycl::nd_range<3 >(sycl::range<3 >(1 , 1 , block_num) *
230
+ sycl::range<3 >(1 , 1 , block_size),
231
+ sycl::range<3 >(1 , 1 , block_size)),
232
+ [=](sycl::nd_item<3 > item_ct1) {
233
+ k_bin_bcast_unravel<bin_op>(
234
+ src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
235
+ ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
236
+ s03, s11, s12, s13, item_ct1);
237
+ });
238
+ }
239
+ } else {
240
+ /*
241
+ DPCT1049:16: The work-group size passed to the SYCL kernel may
242
+ exceed the limit. To get the device limit, query
243
+ info::device::max_work_group_size. Adjust the work-group size if
244
+ needed.
245
+ */
246
+ dpct::has_capability_or_fail (stream->get_device (),
247
+ {sycl::aspect::fp16});
248
+
249
+ stream->parallel_for (
250
+ sycl::nd_range<3 >(block_nums * block_dims, block_dims),
251
+ [=](sycl::nd_item<3 > item_ct1) {
252
+ k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
253
+ ne2, ne3, ne10, ne11, ne12, ne13,
254
+ s1, s2, s3, s01, s02, s03, s11, s12, s13,
255
+ item_ct1);
256
+ });
257
+ }
147
258
}
148
259
}
149
260
};
0 commit comments