Skip to content

Commit 55dc586

Browse files
authored
Merge branch 'main' into books
2 parents 0b30bb5 + 1e8c78a commit 55dc586

File tree

13 files changed

+62
-55
lines changed

13 files changed

+62
-55
lines changed

content/en/about.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,23 +15,24 @@ The NumPy Steering Council is the project's governing body. Its role is to ensur
1515
- Sebastian Berg
1616
- Ralf Gommers
1717
- Charles Harris
18-
- Stephan Hoyer
1918
- Inessa Pawson
2019
- Matti Picus
2120
- Stéfan van der Walt
2221
- Melissa Weber Mendonça
23-
- Eric Wieser
22+
- Marten van Kerkwijk
23+
- Nathan Goldbaum
2424

2525
Emeritus:
2626

2727
- Alex Griffing (2015-2017)
2828
- Allan Haldane (2015-2021)
29-
- Marten van Kerkwijk (2017-2019)
3029
- Travis Oliphant (project founder, 2005-2012)
3130
- Nathaniel Smith (2012-2021)
3231
- Julian Taylor (2013-2021)
3332
- Jaime Fernández del Río (2014-2021)
3433
- Pauli Virtanen (2008-2021)
34+
- Eric Wieser (2017-2025)
35+
- Stephan Hoyer (2017-2025)
3536

3637
To contact the NumPy Steering Council, please email [email protected].
3738

@@ -71,7 +72,7 @@ NumPy receives direct funding from the following sources:
7172
Institutional Partners are organizations that support the project by employing people that contribute to NumPy as part of their job. Current Institutional Partners include:
7273

7374
- UC Berkeley (Stéfan van der Walt)
74-
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça)
75+
- Quansight (Nathan Goldbaum, Ralf Gommers, Matti Picus, Melissa Weber Mendonça, Mateusz Sokol, Rohit Goswami)
7576
- NVIDIA (Sebastian Berg)
7677

7778
{{< partners >}}

content/en/case-studies/cricket-analytics.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -141,7 +141,7 @@ for various kinds of cricket related sporting analytics such as:
141141
and [big data approaches](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996805/)
142142
are used for tactical analysis.
143143

144-
* **Data Visualization:** Data graphing and [visualization](https://towardsdatascience.com/advanced-sports-visualization-with-pandas-matplotlib-and-seaborn-9c16df80a81b) provide useful insights into relationship between various datasets.
144+
* **Data Visualization:** Data graphing and visualization provide useful insights into relationship between various datasets.
145145

146146
## Summary
147147

content/en/community.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -58,12 +58,12 @@ NumPy also organizes in-person sprints for its team and interested contributors
5858

5959
The NumPy project doesn't organize its own conferences. The conferences that have traditionally been most popular with NumPy maintainers, contributors and users are the SciPy and PyData conference series:
6060

61-
- [SciPy US](https://conference.scipy.org)
62-
- [EuroSciPy](https://www.euroscipy.org)
63-
- [SciPy Latin America](https://pythoncientifico.ar/)
64-
- [SciPy India](https://scipy.in)
65-
- [SciPy Japan](https://www.scipyjapan.scipy.org/)
66-
- [PyData conferences](https://pydata.org/event-schedule/) (15-20 events a year spread over many countries)
61+
- SciPy US
62+
- EuroSciPy
63+
- SciPy Latin America
64+
- SciPy India
65+
- SciPyData Japan
66+
- PyData conferences (15-20 events a year spread over many countries)
6767

6868
Many of these conferences include tutorial days that cover NumPy and/or sprints where you can learn how to contribute to NumPy or related open source projects.
6969

content/en/config.yaml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ params:
1111
# Hero subtitle (optional)
1212
subtitle: The fundamental package for scientific computing with Python
1313
# Button text
14-
buttontext: "Latest release: NumPy 2.2. View all releases"
14+
buttontext: "Latest release: NumPy 2.3. View all releases"
1515
# Where the main hero button links to
1616
buttonlink: "/news/#releases"
1717
# Hero image (from static/images/___)
@@ -89,7 +89,7 @@ params:
8989
link: https://numpy.org/doc/stable
9090
- text: Learn
9191
link: /learn
92-
- text: Citing Numpy
92+
- text: Citing NumPy
9393
link: /citing-numpy
9494
- text: Roadmap
9595
link: https://numpy.org/neps/roadmap.html

content/en/contribute.md

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -86,12 +86,15 @@ opportunities abound.
8686

8787
### Translating website content
8888

89-
We plan multiple translations of [numpy.org](https://numpy.org) to make NumPy
90-
accessible to users in their native language. Volunteer translators are at the heart
91-
of this effort. See
92-
[here](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
93-
for background; comment on [this GitHub
94-
issue](https://github.com/numpy/numpy.org/issues/55) to sign up.
89+
We are working on translating [numpy.org](https://numpy.org) into multiple languages to make
90+
its content more accessible to NumPy users all over the globe. (See
91+
[NEP 28](https://numpy.org/neps/nep-0028-website-redesign.html#translation-multilingual-i18n)
92+
for background.) Volunteer translators are at the heart of this effort. If you'd like to help, join the
93+
*translation* channel on the
94+
[Scientific Python Discord server](https://discord.com/channels/786703927705862175/1131695137370669158).
95+
96+
To get familiar with our translation process, read the guide
97+
[How to translate content using Crowdin](https://scientific-python-translations.github.io/translate/).
9598

9699
### Community coordination and outreach
97100

content/en/learn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ Try these advanced resources for a better understanding of NumPy concepts like a
6666
* [The Future of NumPy Indexing](https://www.youtube.com/watch?v=o0EacbIbf58) *by Jaime Fernández* (2016)
6767
* [Evolution of Array Computing in Python](https://www.youtube.com/watch?v=HVLPJnvInzM&t=10s) *by Ralf Gommers* (2019)
6868
* [NumPy: what has changed and what is going to change?](https://www.youtube.com/watch?v=YFLVQFjRmPY) *by Matti Picus* (2019)
69-
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stefan van der Walt, Charles Harris* (2019)
69+
* [Inside NumPy](https://www.youtube.com/watch?v=dBTJD_FDVjU) *by Ralf Gommers, Sebastian Berg, Matti Picus, Tyler Reddy, Stéfan van der Walt, Charles Harris* (2019)
7070
* [Brief Review of Array Computing in Python](https://www.youtube.com/watch?v=f176j2g2eNc) *by Travis Oliphant* (2019)
7171

7272
***

content/en/news.md

Lines changed: 25 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,29 @@
11
---
22
title: "News"
33
sidebar: false
4-
newsHeader: "NumPy 2.2.0 released!"
5-
date: 2024-12-08
4+
newsHeader: "NumPy 2.3.0 released!"
5+
date: 2025-06-07
66
---
77

8+
### NumPy 2.3.0 released
9+
10+
_7 Jun, 2025_ -- The NumPy 2.3.0 release improves free threaded Python support
11+
and annotations together with the usual set of bug fixes. It is unusual in the
12+
number of expired deprecations, code modernizations, and style cleanups. The
13+
latter may not be visible to users, but is important for code maintenance over
14+
the long term. Note that we have also upgraded from manylinux2014 to
15+
manylinux_2_28. Highlights are:
16+
17+
- Interactive examples in the NumPy documentation.
18+
- Building NumPy with OpenMP Parallelization.
19+
- Preliminary support for Windows on ARM.
20+
- Improved support for free threaded Python.
21+
- Improved annotations.
22+
23+
This release supports Python versions 3.11-3.13, Python 3.14 will be
24+
supported when it is released.
25+
26+
827
### NumPy 2.2.0 released
928

1029
_8 Dec, 2024_ -- The NumPy 2.2.0 release is a quick release that brings us back
@@ -442,6 +461,10 @@ Here is a list of NumPy releases, with links to release notes. Bugfix
442461
releases (only the `z` changes in the `x.y.z` version number) have no new
443462
features; minor releases (the `y` increases) do.
444463

464+
- NumPy 2.3.0 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.3.0)) -- _7 Jun 2025_.
465+
- NumPy 2.2.6 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.6)) -- _17 May 2025_.
466+
- NumPy 2.2.5 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.5)) -- _19 Apr 2025_.
467+
- NumPy 2.2.4 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.4)) -- _16 Mar 2025_.
445468
- NumPy 2.2.3 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.3)) -- _13 Feb 2025_.
446469
- NumPy 2.2.2 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.2)) -- _18 Jan 2025_.
447470
- NumPy 2.2.1 ([release notes](https://github.com/numpy/numpy/releases/tag/v2.2.1)) -- _21 Dec 2024_.

content/en/tabcontents.yaml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ params:
22
machinelearning:
33
paras:
44
- para1: NumPy forms the basis of powerful machine learning libraries like [scikit-learn](https://scikit-learn.org) and [SciPy](https://www.scipy.org). As machine learning grows, so does the list of libraries built on NumPy. [TensorFlow’s](https://www.tensorflow.org) deep learning capabilities have broad applications &mdash; among them speech and image recognition, text-based applications, time-series analysis, and video detection. [PyTorch](https://pytorch.org), another deep learning library, is popular among researchers in computer vision and natural language processing.
5-
para2: Statistical techniques called [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205) methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) &mdash; one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
5+
para2: Statistical techniques called [ensemble methods](https://scikit-learn.org/stable/modules/ensemble.html) such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [CatBoost](https://catboost.ai) &mdash; one of the fastest inference engines. [Yellowbrick](https://www.scikit-yb.org/en/latest/) and [Eli5](https://eli5.readthedocs.io/en/latest/) offer machine learning visualizations.
66

77
arraylibraries:
88
intro:
@@ -173,7 +173,7 @@ params:
173173
- url: https://pystan.readthedocs.io/en/latest/
174174
label: PyStan
175175
- url: https://docs.pymc.io/
176-
label: PyMC3
176+
label: PyMC
177177
- url: https://arviz-devs.github.io/arviz/
178178
label: ArviZ
179179
- url: https://emcee.readthedocs.io/
@@ -250,7 +250,7 @@ params:
250250
examples:
251251
- text: "<b>Extract, Transform, Load: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor-devs.github.io/pyjanitor/)"
252252
- text: "<b>Exploratory analysis: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
253-
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
253+
- text: "<b>Model and evaluate: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
254254
- text: "<b>Report in a dashboard: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://voila.readthedocs.io/)"
255255

256256
content:

content/es/tabcontents.yaml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@ params:
22
machinelearning:
33
paras:
44
- para1: NumPy constituye la base de potentes librerías de aprendizaje automático como [scikit-learn](https://scikit-learn.org) y [SciPy](https://www.scipy.org). A medida que crece el aprendizaje automático, también lo hace la lista de librerías basadas en NumPy. Las capacidades de aprendizaje profundo de [TensorFlow](https://www.tensorflow.org) tienen amplias aplicaciones&mdash; entre ellas el reconocimiento de voz e imágenes, las aplicaciones basadas en texto, el análisis de series de tiempo y la detección de vídeo. [PyTorch](https://pytorch.org), otra librería de aprendizaje profundo, es popular entre los investigadores de visión artificial y procesamiento del lenguaje natural.
5-
para2: Las técnicas estadísticas denominadas métodos [ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205), como binning, bagging, stacking y boosting, se encuentran entre los algoritmos de ML implementados por herramientas como [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/) y [CatBoost](https://catboost.ai) &mdash; uno de los motores de inferencia más rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) y [Eli5](https://eli5.readthedocs.io/en/latest/) ofrecen visualizaciones de aprendizaje automático.
5+
para2: Las técnicas estadísticas denominadas [métodos ensemble](https://scikit-learn.org/stable/modules/ensemble.html), como binning, bagging, stacking y boosting, se encuentran entre los algoritmos de ML implementados por herramientas como [XGBoost](https://xgboost.readthedocs.io/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/) y [CatBoost](https://catboost.ai) &mdash; uno de los motores de inferencia más rápidos. [Yellowbrick](https://www.scikit-yb.org/en/latest/) y [Eli5](https://eli5.readthedocs.io/en/latest/) ofrecen visualizaciones de aprendizaje automático.
66
arraylibraries:
77
intro:
88
- text: La API de NumPy es el punto de partida cuando se escriben librerías para explotar hardware innovador, crear tipos de arreglos especializadas o añadir capacidades más allá de lo que NumPy proporciona.
@@ -168,7 +168,7 @@ params:
168168
- url: https://pystan.readthedocs.io/en/latest/
169169
label: PyStan
170170
- url: https://docs.pymc.io/
171-
label: PyMC3
171+
label: PyMC
172172
- url: https://arviz-devs.github.io/arviz/
173173
label: ArviZ
174174
- url: https://emcee.readthedocs.io/
@@ -240,7 +240,7 @@ params:
240240
examples:
241241
- text: "<b>Extraer, Transformar, Cargar: </b>[Pandas](https://pandas.pydata.org), [Intake](https://intake.readthedocs.io), [PyJanitor](https://pyjanitor.readthedocs.io/)"
242242
- text: "<b>Análisis Exploratorio: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
243-
- text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
243+
- text: "<b>Modelado y evaluación: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
244244
- text: "<b>Informes en un panel de control: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
245245
content:
246246
- text: Para grandes volúmenes de datos, [Dask](https://dask.org) y [Ray](https://ray.io/) están diseñados para escalarse. Las implementaciones estables se basan en el versionado de datos ([DVC](https://dvc.org)), rastreo de experimentos ([MLFlow](https://mlflow.org)), y automatización del flujo de trabajo ([Airflow](https://airflow.apache.org), [Dagster](https://dagster.io) y [Prefect](https://www.prefect.io)).

content/ja/tabcontents.yaml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ params:
33
paras:
44
-
55
para1: NumPyは、[scikit-learn](https://scikit-learn.org)や[SciPy](https://www.scipy.org)のような強力な機械学習ライブラリの基礎を形成しています。機械学習の技術分野が成長するにつれ、NumPyをベースにしたライブラリの数も増えています。[TensorFlow](https://www.tensorflow.org)の深層学習機能は、音声認識や画像認識、テキストベースのアプリケーション、時系列分析、動画検出など、幅広い応用用途があります。[PyTorch](https://pytorch.org)も、コンピュータビジョンや自然言語処理の研究者に人気のある深層学習ライブラリです。[MXNet](https://github.com/apache/incubator-mxnet)もAIパッケージの一つで、深層学習の設計図やテンプレート機能を提供しています。
6-
para2: '[ensemble](https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)法と呼ばれる統計的手法であるビンニング、バギング、スタッキングや、[XGBoost](https://github.com/dmlc/xgboost)、[LightGBM](https://lightgbm.readthedocs.io/en/latest/)、[CatBoost](https://catboost.ai)などのツールで実装されているブースティングなどは、機械学習アルゴリズムの一つであり、最速の推論エンジンの一つです。[Yellowbrick](https://www.scikit-yb.org/en/latest/)や[Eli5](https://eli5.readthedocs.io/en/latest/)は機械学習の可視化機能を提供しています。'
6+
para2: '[ensemble](https://scikit-learn.org/stable/modules/ensemble.html)法と呼ばれる統計的手法であるビンニング、バギング、スタッキングや、[XGBoost](https://github.com/dmlc/xgboost)、[LightGBM](https://lightgbm.readthedocs.io/en/latest/)、[CatBoost](https://catboost.ai)などのツールで実装されているブースティングなどは、機械学習アルゴリズムの一つであり、最速の推論エンジンの一つです。[Yellowbrick](https://www.scikit-yb.org/en/latest/)や[Eli5](https://eli5.readthedocs.io/en/latest/)は機械学習の可視化機能を提供しています。'
77
arraylibraries:
88
intro:
99
-
@@ -224,7 +224,7 @@ params:
224224
label: PyStan
225225
-
226226
url: https://docs.pymc.io/
227-
label: PyMC3
227+
label: PyMC
228228
-
229229
url: https://arviz-devs.github.io/arviz/
230230
label: ArviZ
@@ -326,7 +326,7 @@ params:
326326
-
327327
text: "<b>探索的解析: </b>[Jupyter](https://jupyter.org), [Seaborn](https://seaborn.pydata.org), [Matplotlib](https://matplotlib.org), [Altair](https://altair-viz.github.io)"
328328
-
329-
text: "<b>モデリングと評価: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC3](https://docs.pymc.io), [spaCy](https://spacy.io)"
329+
text: "<b>モデリングと評価: </b>[scikit-learn](https://scikit-learn.org), [statsmodels](https://www.statsmodels.org/stable/index.html), [PyMC](https://docs.pymc.io), [spaCy](https://spacy.io)"
330330
-
331331
text: "<b>ダッシュボードでのレポート: </b>[Dash](https://plotly.com/dash), [Panel](https://panel.holoviz.org), [Voila](https://github.com/voila-dashboards/voila)"
332332
content:

0 commit comments

Comments
 (0)