You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
math-emu: Fix signalling of underflow and inexact while packing result.
I'm trying to move the powerpc math-emu code to use the include/math-emu bits.
In doing so I've been using TestFloat to see how good or bad we are
doing. For the most part the current math-emu code that PPC uses has
a number of issues that the code in include/math-emu seems to solve
(plus bugs we've had for ever that no one every realized).
Anyways, I've come across a case that we are flagging underflow and
inexact because we think we have a denormalized result from a double
precision divide:
000.FFFFFFFFFFFFF / 3FE.FFFFFFFFFFFFE
soft: 001.0000000000000 ..... syst: 001.0000000000000 ...ux
What it looks like is the results out of FP_DIV_D are:
D:
sign: 0
mantissa: 01000000 00000000
exp: -1023 (0)
The problem seems like we aren't normalizing the result and bumping the exp.
Now that I'm digging into this a bit I'm thinking my issue has to do with
the fix DaveM put in place from back in Aug 2007 (commit
4058496):
[MATH-EMU]: Fix underflow exception reporting.
2) we ended up rounding back up to normal (this is the case where
we set the exponent to 1 and set the fraction to zero), this
should set inexact too
...
Another example, "0x0.0000000000001p-1022 / 16.0", should signal both
inexact and underflow. The cpu implementations and ieee1754
literature is very clear about this. This is case #2 above.
Here is the distilled glibc test case from Jakub Jelinek which prompted that
commit:
--------------------
#include <float.h>
#include <fenv.h>
#include <stdio.h>
volatile double d = DBL_MIN;
volatile double e = 0x0.0000000000001p-1022;
volatile double f = 16.0;
int
main (void)
{
printf ("%x\n", fetestexcept (FE_UNDERFLOW));
d /= f;
printf ("%x\n", fetestexcept (FE_UNDERFLOW));
e /= f;
printf ("%x\n", fetestexcept (FE_UNDERFLOW));
return 0;
}
--------------------
It looks like the case I have we are exact before rounding, but think it
looks like the rounding case since it appears as if "overflow is set".
000.FFFFFFFFFFFFF / 3FE.FFFFFFFFFFFFE = 001.0000000000000
I think the following adds the check for my case and still works for the
issue your commit was trying to resolve.
Signed-off-by: David S. Miller <[email protected]>
0 commit comments