Skip to content

Commit 9aabf81

Browse files
JoonsooKimtorvalds
authored andcommitted
mm/slub: optimize alloc/free fastpath by removing preemption on/off
We had to insert a preempt enable/disable in the fastpath a while ago in order to guarantee that tid and kmem_cache_cpu are retrieved on the same cpu. It is the problem only for CONFIG_PREEMPT in which scheduler can move the process to other cpu during retrieving data. Now, I reach the solution to remove preempt enable/disable in the fastpath. If tid is matched with kmem_cache_cpu's tid after tid and kmem_cache_cpu are retrieved by separate this_cpu operation, it means that they are retrieved on the same cpu. If not matched, we just have to retry it. With this guarantee, preemption enable/disable isn't need at all even if CONFIG_PREEMPT, so this patch removes it. I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free in CONFIG_PREEMPT. (14.821 ns -> 14.049 ns) Below is the result of Christoph's slab_test reported by Jesper Dangaard Brouer. * Before Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles 10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles 10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles 10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles 10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles 10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles 10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles 10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles 10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles 10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles 10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles 10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 68 cycles 10000 times kmalloc(16)/kfree -> 68 cycles 10000 times kmalloc(32)/kfree -> 69 cycles 10000 times kmalloc(64)/kfree -> 68 cycles 10000 times kmalloc(128)/kfree -> 68 cycles 10000 times kmalloc(256)/kfree -> 68 cycles 10000 times kmalloc(512)/kfree -> 74 cycles 10000 times kmalloc(1024)/kfree -> 75 cycles 10000 times kmalloc(2048)/kfree -> 74 cycles 10000 times kmalloc(4096)/kfree -> 74 cycles 10000 times kmalloc(8192)/kfree -> 75 cycles 10000 times kmalloc(16384)/kfree -> 510 cycles * After Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles 10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles 10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles 10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles 10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles 10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles 10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles 10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles 10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles 10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles 10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles 10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 65 cycles 10000 times kmalloc(16)/kfree -> 66 cycles 10000 times kmalloc(32)/kfree -> 65 cycles 10000 times kmalloc(64)/kfree -> 66 cycles 10000 times kmalloc(128)/kfree -> 66 cycles 10000 times kmalloc(256)/kfree -> 71 cycles 10000 times kmalloc(512)/kfree -> 72 cycles 10000 times kmalloc(1024)/kfree -> 71 cycles 10000 times kmalloc(2048)/kfree -> 71 cycles 10000 times kmalloc(4096)/kfree -> 71 cycles 10000 times kmalloc(8192)/kfree -> 65 cycles 10000 times kmalloc(16384)/kfree -> 511 cycles Most of the results are better than before. Note that this change slightly worses performance in !CONFIG_PREEMPT, roughly 0.3%. Implementing each case separately would help performance, but, since it's so marginal, I didn't do that. This would help maintanance since we have same code for all cases. Signed-off-by: Joonsoo Kim <[email protected]> Acked-by: Christoph Lameter <[email protected]> Tested-by: Jesper Dangaard Brouer <[email protected]> Acked-by: Jesper Dangaard Brouer <[email protected]> Cc: Pekka Enberg <[email protected]> Cc: David Rientjes <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
1 parent 913e027 commit 9aabf81

File tree

1 file changed

+23
-12
lines changed

1 file changed

+23
-12
lines changed

mm/slub.c

Lines changed: 23 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -2398,22 +2398,31 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
23982398
* reading from one cpu area. That does not matter as long
23992399
* as we end up on the original cpu again when doing the cmpxchg.
24002400
*
2401-
* Preemption is disabled for the retrieval of the tid because that
2402-
* must occur from the current processor. We cannot allow rescheduling
2403-
* on a different processor between the determination of the pointer
2404-
* and the retrieval of the tid.
2401+
* We should guarantee that tid and kmem_cache are retrieved on
2402+
* the same cpu. It could be different if CONFIG_PREEMPT so we need
2403+
* to check if it is matched or not.
24052404
*/
2406-
preempt_disable();
2407-
c = this_cpu_ptr(s->cpu_slab);
2405+
do {
2406+
tid = this_cpu_read(s->cpu_slab->tid);
2407+
c = raw_cpu_ptr(s->cpu_slab);
2408+
} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2409+
2410+
/*
2411+
* Irqless object alloc/free algorithm used here depends on sequence
2412+
* of fetching cpu_slab's data. tid should be fetched before anything
2413+
* on c to guarantee that object and page associated with previous tid
2414+
* won't be used with current tid. If we fetch tid first, object and
2415+
* page could be one associated with next tid and our alloc/free
2416+
* request will be failed. In this case, we will retry. So, no problem.
2417+
*/
2418+
barrier();
24082419

24092420
/*
24102421
* The transaction ids are globally unique per cpu and per operation on
24112422
* a per cpu queue. Thus they can be guarantee that the cmpxchg_double
24122423
* occurs on the right processor and that there was no operation on the
24132424
* linked list in between.
24142425
*/
2415-
tid = c->tid;
2416-
preempt_enable();
24172426

24182427
object = c->freelist;
24192428
page = c->page;
@@ -2659,11 +2668,13 @@ static __always_inline void slab_free(struct kmem_cache *s,
26592668
* data is retrieved via this pointer. If we are on the same cpu
26602669
* during the cmpxchg then the free will succedd.
26612670
*/
2662-
preempt_disable();
2663-
c = this_cpu_ptr(s->cpu_slab);
2671+
do {
2672+
tid = this_cpu_read(s->cpu_slab->tid);
2673+
c = raw_cpu_ptr(s->cpu_slab);
2674+
} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
26642675

2665-
tid = c->tid;
2666-
preempt_enable();
2676+
/* Same with comment on barrier() in slab_alloc_node() */
2677+
barrier();
26672678

26682679
if (likely(page == c->page)) {
26692680
set_freepointer(s, object, c->freelist);

0 commit comments

Comments
 (0)