Skip to content

Commit a783474

Browse files
tgrafThomas Graf
authored andcommitted
[PKT_SCHED]: Generic RED layer
Extracts the RED algorithm from sch_red.c and puts it into include/net/red.h for use by other RED based modules. The statistics are extended to be more fine grained in order to differ between probability/forced marks/drops. We now reset the average queue length when setting new parameters, leaving it might result in an unreasonable qavg for a while depending on the value of W. Signed-off-by: Thomas Graf <[email protected]> Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
1 parent 1758ee0 commit a783474

File tree

1 file changed

+325
-0
lines changed

1 file changed

+325
-0
lines changed

include/net/red.h

Lines changed: 325 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,325 @@
1+
#ifndef __NET_SCHED_RED_H
2+
#define __NET_SCHED_RED_H
3+
4+
#include <linux/config.h>
5+
#include <linux/types.h>
6+
#include <net/pkt_sched.h>
7+
#include <net/inet_ecn.h>
8+
#include <net/dsfield.h>
9+
10+
/* Random Early Detection (RED) algorithm.
11+
=======================================
12+
13+
Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
14+
for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
15+
16+
This file codes a "divisionless" version of RED algorithm
17+
as written down in Fig.17 of the paper.
18+
19+
Short description.
20+
------------------
21+
22+
When a new packet arrives we calculate the average queue length:
23+
24+
avg = (1-W)*avg + W*current_queue_len,
25+
26+
W is the filter time constant (chosen as 2^(-Wlog)), it controls
27+
the inertia of the algorithm. To allow larger bursts, W should be
28+
decreased.
29+
30+
if (avg > th_max) -> packet marked (dropped).
31+
if (avg < th_min) -> packet passes.
32+
if (th_min < avg < th_max) we calculate probability:
33+
34+
Pb = max_P * (avg - th_min)/(th_max-th_min)
35+
36+
and mark (drop) packet with this probability.
37+
Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
38+
max_P should be small (not 1), usually 0.01..0.02 is good value.
39+
40+
max_P is chosen as a number, so that max_P/(th_max-th_min)
41+
is a negative power of two in order arithmetics to contain
42+
only shifts.
43+
44+
45+
Parameters, settable by user:
46+
-----------------------------
47+
48+
qth_min - bytes (should be < qth_max/2)
49+
qth_max - bytes (should be at least 2*qth_min and less limit)
50+
Wlog - bits (<32) log(1/W).
51+
Plog - bits (<32)
52+
53+
Plog is related to max_P by formula:
54+
55+
max_P = (qth_max-qth_min)/2^Plog;
56+
57+
F.e. if qth_max=128K and qth_min=32K, then Plog=22
58+
corresponds to max_P=0.02
59+
60+
Scell_log
61+
Stab
62+
63+
Lookup table for log((1-W)^(t/t_ave).
64+
65+
66+
NOTES:
67+
68+
Upper bound on W.
69+
-----------------
70+
71+
If you want to allow bursts of L packets of size S,
72+
you should choose W:
73+
74+
L + 1 - th_min/S < (1-(1-W)^L)/W
75+
76+
th_min/S = 32 th_min/S = 4
77+
78+
log(W) L
79+
-1 33
80+
-2 35
81+
-3 39
82+
-4 46
83+
-5 57
84+
-6 75
85+
-7 101
86+
-8 135
87+
-9 190
88+
etc.
89+
*/
90+
91+
#define RED_STAB_SIZE 256
92+
#define RED_STAB_MASK (RED_STAB_SIZE - 1)
93+
94+
struct red_stats
95+
{
96+
u32 prob_drop; /* Early probability drops */
97+
u32 prob_mark; /* Early probability marks */
98+
u32 forced_drop; /* Forced drops, qavg > max_thresh */
99+
u32 forced_mark; /* Forced marks, qavg > max_thresh */
100+
u32 pdrop; /* Drops due to queue limits */
101+
u32 other; /* Drops due to drop() calls */
102+
u32 backlog;
103+
};
104+
105+
struct red_parms
106+
{
107+
/* Parameters */
108+
u32 qth_min; /* Min avg length threshold: A scaled */
109+
u32 qth_max; /* Max avg length threshold: A scaled */
110+
u32 Scell_max;
111+
u32 Rmask; /* Cached random mask, see red_rmask */
112+
u8 Scell_log;
113+
u8 Wlog; /* log(W) */
114+
u8 Plog; /* random number bits */
115+
u8 Stab[RED_STAB_SIZE];
116+
117+
/* Variables */
118+
int qcount; /* Number of packets since last random
119+
number generation */
120+
u32 qR; /* Cached random number */
121+
122+
unsigned long qavg; /* Average queue length: A scaled */
123+
psched_time_t qidlestart; /* Start of current idle period */
124+
};
125+
126+
static inline u32 red_rmask(u8 Plog)
127+
{
128+
return Plog < 32 ? ((1 << Plog) - 1) : ~0UL;
129+
}
130+
131+
static inline void red_set_parms(struct red_parms *p,
132+
u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
133+
u8 Scell_log, u8 *stab)
134+
{
135+
/* Reset average queue length, the value is strictly bound
136+
* to the parameters below, reseting hurts a bit but leaving
137+
* it might result in an unreasonable qavg for a while. --TGR
138+
*/
139+
p->qavg = 0;
140+
141+
p->qcount = -1;
142+
p->qth_min = qth_min << Wlog;
143+
p->qth_max = qth_max << Wlog;
144+
p->Wlog = Wlog;
145+
p->Plog = Plog;
146+
p->Rmask = red_rmask(Plog);
147+
p->Scell_log = Scell_log;
148+
p->Scell_max = (255 << Scell_log);
149+
150+
memcpy(p->Stab, stab, sizeof(p->Stab));
151+
}
152+
153+
static inline int red_is_idling(struct red_parms *p)
154+
{
155+
return !PSCHED_IS_PASTPERFECT(p->qidlestart);
156+
}
157+
158+
static inline void red_start_of_idle_period(struct red_parms *p)
159+
{
160+
PSCHED_GET_TIME(p->qidlestart);
161+
}
162+
163+
static inline void red_end_of_idle_period(struct red_parms *p)
164+
{
165+
PSCHED_SET_PASTPERFECT(p->qidlestart);
166+
}
167+
168+
static inline void red_restart(struct red_parms *p)
169+
{
170+
red_end_of_idle_period(p);
171+
p->qavg = 0;
172+
p->qcount = -1;
173+
}
174+
175+
static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p)
176+
{
177+
psched_time_t now;
178+
long us_idle;
179+
int shift;
180+
181+
PSCHED_GET_TIME(now);
182+
us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max);
183+
184+
/*
185+
* The problem: ideally, average length queue recalcultion should
186+
* be done over constant clock intervals. This is too expensive, so
187+
* that the calculation is driven by outgoing packets.
188+
* When the queue is idle we have to model this clock by hand.
189+
*
190+
* SF+VJ proposed to "generate":
191+
*
192+
* m = idletime / (average_pkt_size / bandwidth)
193+
*
194+
* dummy packets as a burst after idle time, i.e.
195+
*
196+
* p->qavg *= (1-W)^m
197+
*
198+
* This is an apparently overcomplicated solution (f.e. we have to
199+
* precompute a table to make this calculation in reasonable time)
200+
* I believe that a simpler model may be used here,
201+
* but it is field for experiments.
202+
*/
203+
204+
shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
205+
206+
if (shift)
207+
return p->qavg >> shift;
208+
else {
209+
/* Approximate initial part of exponent with linear function:
210+
*
211+
* (1-W)^m ~= 1-mW + ...
212+
*
213+
* Seems, it is the best solution to
214+
* problem of too coarse exponent tabulation.
215+
*/
216+
us_idle = (p->qavg * us_idle) >> p->Scell_log;
217+
218+
if (us_idle < (p->qavg >> 1))
219+
return p->qavg - us_idle;
220+
else
221+
return p->qavg >> 1;
222+
}
223+
}
224+
225+
static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p,
226+
unsigned int backlog)
227+
{
228+
/*
229+
* NOTE: p->qavg is fixed point number with point at Wlog.
230+
* The formula below is equvalent to floating point
231+
* version:
232+
*
233+
* qavg = qavg*(1-W) + backlog*W;
234+
*
235+
* --ANK (980924)
236+
*/
237+
return p->qavg + (backlog - (p->qavg >> p->Wlog));
238+
}
239+
240+
static inline unsigned long red_calc_qavg(struct red_parms *p,
241+
unsigned int backlog)
242+
{
243+
if (!red_is_idling(p))
244+
return red_calc_qavg_no_idle_time(p, backlog);
245+
else
246+
return red_calc_qavg_from_idle_time(p);
247+
}
248+
249+
static inline u32 red_random(struct red_parms *p)
250+
{
251+
return net_random() & p->Rmask;
252+
}
253+
254+
static inline int red_mark_probability(struct red_parms *p, unsigned long qavg)
255+
{
256+
/* The formula used below causes questions.
257+
258+
OK. qR is random number in the interval 0..Rmask
259+
i.e. 0..(2^Plog). If we used floating point
260+
arithmetics, it would be: (2^Plog)*rnd_num,
261+
where rnd_num is less 1.
262+
263+
Taking into account, that qavg have fixed
264+
point at Wlog, and Plog is related to max_P by
265+
max_P = (qth_max-qth_min)/2^Plog; two lines
266+
below have the following floating point equivalent:
267+
268+
max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
269+
270+
Any questions? --ANK (980924)
271+
*/
272+
return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR);
273+
}
274+
275+
enum {
276+
RED_BELOW_MIN_THRESH,
277+
RED_BETWEEN_TRESH,
278+
RED_ABOVE_MAX_TRESH,
279+
};
280+
281+
static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg)
282+
{
283+
if (qavg < p->qth_min)
284+
return RED_BELOW_MIN_THRESH;
285+
else if (qavg >= p->qth_max)
286+
return RED_ABOVE_MAX_TRESH;
287+
else
288+
return RED_BETWEEN_TRESH;
289+
}
290+
291+
enum {
292+
RED_DONT_MARK,
293+
RED_PROB_MARK,
294+
RED_HARD_MARK,
295+
};
296+
297+
static inline int red_action(struct red_parms *p, unsigned long qavg)
298+
{
299+
switch (red_cmp_thresh(p, qavg)) {
300+
case RED_BELOW_MIN_THRESH:
301+
p->qcount = -1;
302+
return RED_DONT_MARK;
303+
304+
case RED_BETWEEN_TRESH:
305+
if (++p->qcount) {
306+
if (red_mark_probability(p, qavg)) {
307+
p->qcount = 0;
308+
p->qR = red_random(p);
309+
return RED_PROB_MARK;
310+
}
311+
} else
312+
p->qR = red_random(p);
313+
314+
return RED_DONT_MARK;
315+
316+
case RED_ABOVE_MAX_TRESH:
317+
p->qcount = -1;
318+
return RED_HARD_MARK;
319+
}
320+
321+
BUG();
322+
return RED_DONT_MARK;
323+
}
324+
325+
#endif

0 commit comments

Comments
 (0)