@@ -5175,15 +5175,21 @@ def stack(self, level=-1, dropna=True):
5175
5175
5176
5176
Examples
5177
5177
--------
5178
+ >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
5179
+ ... index=['one', 'two'],
5180
+ ... columns=['a', 'b'])
5181
+ >>> multicol = pd.MultiIndex.from_tuples([('X', 'a'), ('X', 'b')])
5182
+ >>> df_multi_level_cols = pd.DataFrame([[0, 1], [2, 3]],
5183
+ ... index=['one', 'two'],
5184
+ ... columns=multicol)
5178
5185
5179
- Stacking a dataframe with a single level column axis:
5186
+ Stacking a dataframe with a single level column axis returns a Series :
5180
5187
5181
- >>> s = pd.DataFrame([[0, 1], [2, 3]], index=['one', 'two'], columns=['a', 'b'])
5182
- >>> s
5188
+ >>> df_single_level_cols
5183
5189
a b
5184
5190
one 0 1
5185
5191
two 2 3
5186
- >>> s .stack()
5192
+ >>> df_single_level_cols .stack()
5187
5193
one a 0
5188
5194
b 1
5189
5195
two a 2
@@ -5192,14 +5198,12 @@ def stack(self, level=-1, dropna=True):
5192
5198
5193
5199
Stacking a dataframe with a multi-level column axis with no missing values:
5194
5200
5195
- >>> multicol = pd.MultiIndex.from_tuples([('X', 'a'), ('X', 'b')])
5196
- >>> s = pd.DataFrame([[0, 1], [2, 3]], index=['one', 'two'], columns=multicol)
5197
- >>> s
5201
+ >>> df_multi_level_cols
5198
5202
X
5199
5203
a b
5200
5204
one 0 1
5201
5205
two 2 3
5202
- >>> s .stack()
5206
+ >>> df_multi_level_cols .stack()
5203
5207
X
5204
5208
one a 0
5205
5209
b 1
0 commit comments