Skip to content

Commit ad12c64

Browse files
committed
fix doc
1 parent 4b26301 commit ad12c64

File tree

1 file changed

+55
-58
lines changed

1 file changed

+55
-58
lines changed

pandas/core/frame.py

Lines changed: 55 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -4808,70 +4808,67 @@ def aggregate(self, func, axis=0, *args, **kwargs):
48084808

48094809
agg = aggregate
48104810

4811-
_shared_docs['apply'] = ("""
4812-
Applies function along input axis of DataFrame.
4811+
def apply(self, func, axis=0, broadcast=False, raw=False, reduce=None,
4812+
args=(), **kwds):
4813+
"""Applies function along input axis of DataFrame.
48134814
4814-
Objects passed to functions are Series objects having index
4815-
either the DataFrame's index (axis=0) or the columns (axis=1).
4816-
Return type depends on whether passed function aggregates, or the
4817-
reduce argument if the DataFrame is empty.
4815+
Objects passed to functions are Series objects having index
4816+
either the DataFrame's index (axis=0) or the columns (axis=1).
4817+
Return type depends on whether passed function aggregates, or the
4818+
reduce argument if the DataFrame is empty.
48184819
4819-
Parameters
4820-
----------
4821-
func : function
4822-
Function to apply to each column/row
4823-
axis : {0 or 'index', 1 or 'columns'}, default 0
4824-
* 0 or 'index': apply function to each column
4825-
* 1 or 'columns': apply function to each row
4826-
broadcast : boolean, default False
4827-
For aggregation functions, return object of same size with values
4828-
propagated
4829-
raw : boolean, default False
4830-
If False, convert each row or column into a Series. If raw=True the
4831-
passed function will receive ndarray objects instead. If you are
4832-
just applying a NumPy reduction function this will achieve much
4833-
better performance
4834-
reduce : boolean or None, default None
4835-
Try to apply reduction procedures. If the DataFrame is empty,
4836-
apply will use reduce to determine whether the result should be a
4837-
Series or a DataFrame. If reduce is None (the default), apply's
4838-
return value will be guessed by calling func an empty Series (note:
4839-
while guessing, exceptions raised by func will be ignored). If
4840-
reduce is True a Series will always be returned, and if False a
4841-
DataFrame will always be returned.
4842-
args : tuple
4843-
Positional arguments to pass to function in addition to the
4844-
array/series
4845-
Additional keyword arguments will be passed as keywords to the function
4846-
4847-
Notes
4848-
-----
4849-
In the current implementation apply calls func twice on the
4850-
first column/row to decide whether it can take a fast or slow
4851-
code path. This can lead to unexpected behavior if func has
4852-
side-effects, as they will take effect twice for the first
4853-
column/row.
4820+
Parameters
4821+
----------
4822+
func : function
4823+
Function to apply to each column/row
4824+
axis : {0 or 'index', 1 or 'columns'}, default 0
4825+
* 0 or 'index': apply function to each column
4826+
* 1 or 'columns': apply function to each row
4827+
broadcast : boolean, default False
4828+
For aggregation functions, return object of same size with values
4829+
propagated
4830+
raw : boolean, default False
4831+
If False, convert each row or column into a Series. If raw=True the
4832+
passed function will receive ndarray objects instead. If you are
4833+
just applying a NumPy reduction function this will achieve much
4834+
better performance
4835+
reduce : boolean or None, default None
4836+
Try to apply reduction procedures. If the DataFrame is empty,
4837+
apply will use reduce to determine whether the result should be a
4838+
Series or a DataFrame. If reduce is None (the default), apply's
4839+
return value will be guessed by calling func an empty Series (note:
4840+
while guessing, exceptions raised by func will be ignored). If
4841+
reduce is True a Series will always be returned, and if False a
4842+
DataFrame will always be returned.
4843+
args : tuple
4844+
Positional arguments to pass to function in addition to the
4845+
array/series
4846+
Additional keyword arguments will be passed as keywords to the function
48544847
4855-
Examples
4856-
--------
4857-
>>> df.apply(numpy.sqrt) # returns DataFrame
4858-
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
4859-
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
4848+
Notes
4849+
-----
4850+
In the current implementation apply calls func twice on the
4851+
first column/row to decide whether it can take a fast or slow
4852+
code path. This can lead to unexpected behavior if func has
4853+
side-effects, as they will take effect twice for the first
4854+
column/row.
48604855
4861-
See also
4862-
--------
4863-
DataFrame.applymap: For elementwise operations
4864-
DataFrame.aggregate: only perform aggregating type operations
4865-
DataFrame.transform: only perform transformating type operations
4856+
Examples
4857+
--------
4858+
>>> df.apply(numpy.sqrt) # returns DataFrame
4859+
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
4860+
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
48664861
4867-
Returns
4868-
-------
4869-
applied : Series or DataFrame
4870-
""")
4862+
See also
4863+
--------
4864+
DataFrame.applymap: For elementwise operations
4865+
DataFrame.aggregate: only perform aggregating type operations
4866+
DataFrame.transform: only perform transformating type operations
48714867
4872-
@Appender(_shared_docs['apply'])
4873-
def apply(self, func, axis=0, broadcast=False, raw=False, reduce=None,
4874-
args=(), **kwds):
4868+
Returns
4869+
-------
4870+
applied : Series or DataFrame
4871+
"""
48754872
from pandas.core.apply import frame_apply
48764873
op = frame_apply(self,
48774874
func=func,

0 commit comments

Comments
 (0)