@@ -1777,7 +1777,44 @@ def freq(self, value):
1777
1777
is_quarter_start = _field_accessor (
1778
1778
'is_quarter_start' ,
1779
1779
'is_quarter_start' ,
1780
- "Logical indicating if first day of quarter (defined by frequency)" )
1780
+ """
1781
+ Indicator for whether the date is the first day of a quarter.
1782
+
1783
+ Returns
1784
+ -------
1785
+ is_quarter_start : Series or DatetimeIndex
1786
+ The same type as the original data with boolean values. Series will
1787
+ have the same name and index. DatetimeIndex will have the same
1788
+ name.
1789
+
1790
+ See Also
1791
+ --------
1792
+ quarter : Return the quarter of the date.
1793
+ is_quarter_end : Similar method for indicating the start of a quarter.
1794
+
1795
+ Examples
1796
+ --------
1797
+ This method is available on Series with datetime values under
1798
+ the ``.dt`` accessor, and directly on DatetimeIndex.
1799
+
1800
+ >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
1801
+ ... periods=4)})
1802
+ >>> df.assign(quarter=df.dates.dt.quarter,
1803
+ ... is_quarter_start=df.dates.dt.is_quarter_start)
1804
+ dates quarter is_quarter_start
1805
+ 0 2017-03-30 1 False
1806
+ 1 2017-03-31 1 False
1807
+ 2 2017-04-01 2 True
1808
+ 3 2017-04-02 2 False
1809
+
1810
+ >>> idx = pd.date_range('2017-03-30', periods=4)
1811
+ >>> idx
1812
+ DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],
1813
+ dtype='datetime64[ns]', freq='D')
1814
+
1815
+ >>> idx.is_quarter_start
1816
+ array([False, False, True, False])
1817
+ """ )
1781
1818
is_quarter_end = _field_accessor (
1782
1819
'is_quarter_end' ,
1783
1820
'is_quarter_end' ,
0 commit comments