BUG: "unique" and pd.Series.unique produce different results with aggregation #39920
Open
3 tasks done
Labels
Apply
Apply, Aggregate, Transform, Map
Bug
Groupby
Needs Discussion
Requires discussion from core team before further action
Uh oh!
There was an error while loading. Please reload this page.
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
Running this script produces
Problem description
When using "unique" str as the
aggfunc
parameter, internally it is interpreted aspd.Series.unique
. I expect identical results when passing "unique" andpd.Series.unique
, orpd.unique
but they are not.Output of
pd.show_versions()
INSTALLED VERSIONS
commit : f904213
python : 3.9.1.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.11-arch1-1
Version : #1 SMP PREEMPT Wed, 27 Jan 2021 13:53:16 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.0.dev0+772.gf904213ffc
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 20.2.3
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: