@@ -206,7 +206,7 @@ def default_bucket(self):
206
206
Bucket = default_bucket , CreateBucketConfiguration = {"LocationConstraint" : region }
207
207
)
208
208
209
- LOGGER .info ("Created S3 bucket: {}" . format ( default_bucket ) )
209
+ LOGGER .info ("Created S3 bucket: %s" , default_bucket )
210
210
except ClientError as e :
211
211
error_code = e .response ["Error" ]["Code" ]
212
212
message = e .response ["Error" ]["Message" ]
@@ -343,8 +343,8 @@ def train( # noqa: C901
343
343
if encrypt_inter_container_traffic :
344
344
train_request ["EnableInterContainerTrafficEncryption" ] = encrypt_inter_container_traffic
345
345
346
- LOGGER .info ("Creating training-job with name: {}" . format ( job_name ) )
347
- LOGGER .debug ("train request: {}" . format ( json .dumps (train_request , indent = 4 ) ))
346
+ LOGGER .info ("Creating training-job with name: %s" , job_name )
347
+ LOGGER .debug ("train request: %s" , json .dumps (train_request , indent = 4 ))
348
348
self .sagemaker_client .create_training_job (** train_request )
349
349
350
350
def compile_model (
@@ -379,7 +379,7 @@ def compile_model(
379
379
if tags is not None :
380
380
compilation_job_request ["Tags" ] = tags
381
381
382
- LOGGER .info ("Creating compilation-job with name: {}" . format ( job_name ) )
382
+ LOGGER .info ("Creating compilation-job with name: %s" , job_name )
383
383
self .sagemaker_client .create_compilation_job (** compilation_job_request )
384
384
385
385
def tune (
@@ -521,8 +521,8 @@ def tune(
521
521
if encrypt_inter_container_traffic :
522
522
tune_request ["TrainingJobDefinition" ]["EnableInterContainerTrafficEncryption" ] = True
523
523
524
- LOGGER .info ("Creating hyperparameter tuning job with name: {}" . format ( job_name ) )
525
- LOGGER .debug ("tune request: {}" . format ( json .dumps (tune_request , indent = 4 ) ))
524
+ LOGGER .info ("Creating hyperparameter tuning job with name: %s" , job_name )
525
+ LOGGER .debug ("tune request: %s" , json .dumps (tune_request , indent = 4 ))
526
526
self .sagemaker_client .create_hyper_parameter_tuning_job (** tune_request )
527
527
528
528
def stop_tuning_job (self , name ):
@@ -535,18 +535,17 @@ def stop_tuning_job(self, name):
535
535
ClientError: If an error occurs while trying to stop the hyperparameter tuning job.
536
536
"""
537
537
try :
538
- LOGGER .info ("Stopping tuning job: {}" . format ( name ) )
538
+ LOGGER .info ("Stopping tuning job: %s" , name )
539
539
self .sagemaker_client .stop_hyper_parameter_tuning_job (HyperParameterTuningJobName = name )
540
540
except ClientError as e :
541
541
error_code = e .response ["Error" ]["Code" ]
542
542
# allow to pass if the job already stopped
543
543
if error_code == "ValidationException" :
544
- LOGGER .info ("Tuning job: {} is already stopped or not running." . format ( name ) )
544
+ LOGGER .info ("Tuning job: %s is already stopped or not running." , name )
545
545
else :
546
546
LOGGER .error (
547
- "Error occurred while attempting to stop tuning job: {}. Please try again." .format (
548
- name
549
- )
547
+ "Error occurred while attempting to stop tuning job: %s. Please try again." ,
548
+ name ,
550
549
)
551
550
raise
552
551
@@ -608,8 +607,8 @@ def transform(
608
607
if data_processing is not None :
609
608
transform_request ["DataProcessing" ] = data_processing
610
609
611
- LOGGER .info ("Creating transform job with name: {}" . format ( job_name ) )
612
- LOGGER .debug ("Transform request: {}" . format ( json .dumps (transform_request , indent = 4 ) ))
610
+ LOGGER .info ("Creating transform job with name: %s" , job_name )
611
+ LOGGER .debug ("Transform request: %s" , json .dumps (transform_request , indent = 4 ))
613
612
self .sagemaker_client .create_transform_job (** transform_request )
614
613
615
614
def create_model (
@@ -681,8 +680,8 @@ def create_model(
681
680
if enable_network_isolation :
682
681
create_model_request ["EnableNetworkIsolation" ] = True
683
682
684
- LOGGER .info ("Creating model with name: {}" . format ( name ) )
685
- LOGGER .debug ("CreateModel request: {}" . format ( json .dumps (create_model_request , indent = 4 ) ))
683
+ LOGGER .info ("Creating model with name: %s" , name )
684
+ LOGGER .debug ("CreateModel request: %s" , json .dumps (create_model_request , indent = 4 ))
686
685
687
686
try :
688
687
self .sagemaker_client .create_model (** create_model_request )
@@ -694,7 +693,7 @@ def create_model(
694
693
error_code == "ValidationException"
695
694
and "Cannot create already existing model" in message
696
695
):
697
- LOGGER .warning ("Using already existing model: {}" . format ( name ) )
696
+ LOGGER .warning ("Using already existing model: %s" , name )
698
697
else :
699
698
raise
700
699
@@ -765,14 +764,14 @@ def create_model_package_from_algorithm(self, name, description, algorithm_arn,
765
764
},
766
765
}
767
766
try :
768
- LOGGER .info ("Creating model package with name: {}" . format ( name ) )
767
+ LOGGER .info ("Creating model package with name: %s" , name )
769
768
self .sagemaker_client .create_model_package (** request )
770
769
except ClientError as e :
771
770
error_code = e .response ["Error" ]["Code" ]
772
771
message = e .response ["Error" ]["Message" ]
773
772
774
773
if error_code == "ValidationException" and "ModelPackage already exists" in message :
775
- LOGGER .warning ("Using already existing model package: {}" . format ( name ) )
774
+ LOGGER .warning ("Using already existing model package: %s" , name )
776
775
else :
777
776
raise
778
777
@@ -833,7 +832,7 @@ def create_endpoint_config(
833
832
Returns:
834
833
str: Name of the endpoint point configuration created.
835
834
"""
836
- LOGGER .info ("Creating endpoint-config with name {}" . format ( name ) )
835
+ LOGGER .info ("Creating endpoint-config with name %s" , name )
837
836
838
837
tags = tags or []
839
838
@@ -872,7 +871,7 @@ def create_endpoint(self, endpoint_name, config_name, tags=None, wait=True):
872
871
Returns:
873
872
str: Name of the Amazon SageMaker ``Endpoint`` created.
874
873
"""
875
- LOGGER .info ("Creating endpoint with name {}" . format ( endpoint_name ) )
874
+ LOGGER .info ("Creating endpoint with name %s" , endpoint_name )
876
875
877
876
tags = tags or []
878
877
@@ -915,7 +914,7 @@ def delete_endpoint(self, endpoint_name):
915
914
Args:
916
915
endpoint_name (str): Name of the Amazon SageMaker ``Endpoint`` to delete.
917
916
"""
918
- LOGGER .info ("Deleting endpoint with name: {}" . format ( endpoint_name ) )
917
+ LOGGER .info ("Deleting endpoint with name: %s" , endpoint_name )
919
918
self .sagemaker_client .delete_endpoint (EndpointName = endpoint_name )
920
919
921
920
def delete_endpoint_config (self , endpoint_config_name ):
@@ -924,7 +923,7 @@ def delete_endpoint_config(self, endpoint_config_name):
924
923
Args:
925
924
endpoint_config_name (str): Name of the Amazon SageMaker endpoint configuration to delete.
926
925
"""
927
- LOGGER .info ("Deleting endpoint configuration with name: {}" . format ( endpoint_config_name ) )
926
+ LOGGER .info ("Deleting endpoint configuration with name: %s" , endpoint_config_name )
928
927
self .sagemaker_client .delete_endpoint_config (EndpointConfigName = endpoint_config_name )
929
928
930
929
def delete_model (self , model_name ):
@@ -934,7 +933,7 @@ def delete_model(self, model_name):
934
933
model_name (str): Name of the Amazon SageMaker model to delete.
935
934
936
935
"""
937
- LOGGER .info ("Deleting model with name: {}" . format ( model_name ) )
936
+ LOGGER .info ("Deleting model with name: %s" , model_name )
938
937
self .sagemaker_client .delete_model (ModelName = model_name )
939
938
940
939
def wait_for_job (self , job , poll = 5 ):
@@ -1258,9 +1257,8 @@ def get_caller_identity_arn(self):
1258
1257
role = self .boto_session .client ("iam" ).get_role (RoleName = role_name )["Role" ]["Arn" ]
1259
1258
except ClientError :
1260
1259
LOGGER .warning (
1261
- "Couldn't call 'get_role' to get Role ARN from role name {} to get Role path." .format (
1262
- role_name
1263
- )
1260
+ "Couldn't call 'get_role' to get Role ARN from role name %s to get Role path." ,
1261
+ role_name ,
1264
1262
)
1265
1263
1266
1264
return role
0 commit comments