@@ -55,7 +55,7 @@ functions that do the computation.
55
55
cs.plot();
56
56
plt.title(' Ineichen, linke_turbidity=3' );
57
57
@savefig location -ineichen.png width=6in
58
- plt.ylabel(' Irradiance $W/m^2$' )
58
+ plt.ylabel(' Irradiance $W/m^2$' );
59
59
60
60
.. ipython :: python
61
61
@@ -76,8 +76,9 @@ The model parameterizes irradiance in terms of the Linke turbidity.
76
76
Turbidity
77
77
^^^^^^^^^
78
78
79
- The code below creates turbidity plots for a few months of the year.
80
- You could run it in a loop to create plots for all months.
79
+ pvlib includes a file with monthly climatological turbidity values for
80
+ the globe. The code below creates turbidity maps for a few months of
81
+ the year. You could run it in a loop to create plots for all months.
81
82
82
83
.. ipython :: python
83
84
@@ -107,15 +108,20 @@ You could run it in a loop to create plots for all months.
107
108
@savefig turbidity -7.png width=10in
108
109
plt.colorbar();
109
110
110
-
111
- Here's a plot of selected areas in the Southwest U.S. We have
112
- intentionally shown points that are relatively close so that you can get
113
- a sense of the variability of the data set.
111
+ The :py:func: `~pvlib.clearsky.lookup_linke_turbidity ` function takes a
112
+ time, latitude, and longitude and gets the corresponding climatological
113
+ turbidity value for that time at those coordinates. By default, the
114
+ :py:func: `~pvlib.clearsky.lookup_linke_turbidity ` function will linearly
115
+ interpolate turbidity from month to month. This removes discontinuities
116
+ in multi-month PV models. Here's a plot of a few locations in the
117
+ Southwest U.S. with and without interpolation. We have intentionally
118
+ shown points that are relatively close so that you can get a sense of
119
+ the variability of the data set.
114
120
115
121
.. ipython :: python
116
122
117
123
times = pd.DatetimeIndex(start = ' 2015-01-01' , end = ' 2016-01-01' , freq = ' 1D' )
118
- plt.figure()
124
+ plt.figure();
119
125
pvlib.clearsky.lookup_linke_turbidity(times, 32 , - 111 , interp_turbidity = False ).plot(label = ' Tucson1' );
120
126
pvlib.clearsky.lookup_linke_turbidity(times, 32.2 , - 110.9 , interp_turbidity = False ).plot(label = ' Tucson2' );
121
127
pvlib.clearsky.lookup_linke_turbidity(times, 33.5 , - 112.1 , interp_turbidity = False ).plot(label = ' Phoenix' );
@@ -124,11 +130,6 @@ a sense of the variability of the data set.
124
130
@savefig turbidity -no-interp.png width=6in
125
131
plt.ylabel(' Linke Turbidity' );
126
132
127
- By default, the :py:func: `~pvlib.clearsky.lookup_linke_turbidity `
128
- function will linearly interpolate turbidity from month to month. This
129
- removes discontinuities in multi-month PV models. See the source code
130
- for details.
131
-
132
133
.. ipython :: python
133
134
134
135
times = pd.DatetimeIndex(start = ' 2015-01-01' , end = ' 2016-01-01' , freq = ' 1D' )
@@ -147,7 +148,7 @@ Arizona. Here are links to an
147
148
`ipynb notebook
148
149
<https://forecasting.energy.arizona.edu/media/ineichen_vs_mcclear.ipynb> `_
149
150
and its `html rendering
150
- <https://forecasting.uaren.org /media/ineichen_vs_mcclear.html> `_.
151
+ <https://forecasting.energy.arizona.edu /media/ineichen_vs_mcclear.html> `_.
151
152
152
153
153
154
Simplified Solis
0 commit comments