Skip to content

Commit 0a9965e

Browse files
committed
edits
1 parent c0fe9bf commit 0a9965e

File tree

1 file changed

+15
-14
lines changed

1 file changed

+15
-14
lines changed

docs/sphinx/source/clearsky.rst

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ functions that do the computation.
5555
cs.plot();
5656
plt.title('Ineichen, linke_turbidity=3');
5757
@savefig location-ineichen.png width=6in
58-
plt.ylabel('Irradiance $W/m^2$')
58+
plt.ylabel('Irradiance $W/m^2$');
5959
6060
.. ipython:: python
6161
@@ -76,8 +76,9 @@ The model parameterizes irradiance in terms of the Linke turbidity.
7676
Turbidity
7777
^^^^^^^^^
7878

79-
The code below creates turbidity plots for a few months of the year.
80-
You could run it in a loop to create plots for all months.
79+
pvlib includes a file with monthly climatological turbidity values for
80+
the globe. The code below creates turbidity maps for a few months of
81+
the year. You could run it in a loop to create plots for all months.
8182

8283
.. ipython:: python
8384
@@ -107,15 +108,20 @@ You could run it in a loop to create plots for all months.
107108
@savefig turbidity-7.png width=10in
108109
plt.colorbar();
109110
110-
111-
Here's a plot of selected areas in the Southwest U.S. We have
112-
intentionally shown points that are relatively close so that you can get
113-
a sense of the variability of the data set.
111+
The :py:func:`~pvlib.clearsky.lookup_linke_turbidity` function takes a
112+
time, latitude, and longitude and gets the corresponding climatological
113+
turbidity value for that time at those coordinates. By default, the
114+
:py:func:`~pvlib.clearsky.lookup_linke_turbidity` function will linearly
115+
interpolate turbidity from month to month. This removes discontinuities
116+
in multi-month PV models. Here's a plot of a few locations in the
117+
Southwest U.S. with and without interpolation. We have intentionally
118+
shown points that are relatively close so that you can get a sense of
119+
the variability of the data set.
114120

115121
.. ipython:: python
116122
117123
times = pd.DatetimeIndex(start='2015-01-01', end='2016-01-01', freq='1D')
118-
plt.figure()
124+
plt.figure();
119125
pvlib.clearsky.lookup_linke_turbidity(times, 32, -111, interp_turbidity=False).plot(label='Tucson1');
120126
pvlib.clearsky.lookup_linke_turbidity(times, 32.2, -110.9, interp_turbidity=False).plot(label='Tucson2');
121127
pvlib.clearsky.lookup_linke_turbidity(times, 33.5, -112.1, interp_turbidity=False).plot(label='Phoenix');
@@ -124,11 +130,6 @@ a sense of the variability of the data set.
124130
@savefig turbidity-no-interp.png width=6in
125131
plt.ylabel('Linke Turbidity');
126132
127-
By default, the :py:func:`~pvlib.clearsky.lookup_linke_turbidity`
128-
function will linearly interpolate turbidity from month to month. This
129-
removes discontinuities in multi-month PV models. See the source code
130-
for details.
131-
132133
.. ipython:: python
133134
134135
times = pd.DatetimeIndex(start='2015-01-01', end='2016-01-01', freq='1D')
@@ -147,7 +148,7 @@ Arizona. Here are links to an
147148
`ipynb notebook
148149
<https://forecasting.energy.arizona.edu/media/ineichen_vs_mcclear.ipynb>`_
149150
and its `html rendering
150-
<https://forecasting.uaren.org/media/ineichen_vs_mcclear.html>`_.
151+
<https://forecasting.energy.arizona.edu/media/ineichen_vs_mcclear.html>`_.
151152

152153

153154
Simplified Solis

0 commit comments

Comments
 (0)