|
| 1 | +from collections.abc import Callable |
| 2 | +from typing import NamedTuple |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import pytensor.tensor as pt |
| 6 | + |
| 7 | +from pytensor.tensor.variable import TensorVariable |
| 8 | +from scipy.optimize import fmin_l_bfgs_b |
| 9 | + |
| 10 | + |
| 11 | +class LBFGSHistory(NamedTuple): |
| 12 | + x: TensorVariable |
| 13 | + f: TensorVariable |
| 14 | + g: TensorVariable |
| 15 | + |
| 16 | + |
| 17 | +class LBFGSHistoryManager: |
| 18 | + def __init__(self, fn: Callable, grad_fn: Callable, x0: np.ndarray, maxiter: int): |
| 19 | + dim = x0.shape[0] |
| 20 | + maxiter_add_one = maxiter + 1 |
| 21 | + # Preallocate arrays to save memory and improve speed |
| 22 | + self.x_history = np.empty((maxiter_add_one, dim), dtype=np.float64) |
| 23 | + self.f_history = np.empty(maxiter_add_one, dtype=np.float64) |
| 24 | + self.g_history = np.empty((maxiter_add_one, dim), dtype=np.float64) |
| 25 | + self.count = 0 |
| 26 | + self.fn = fn |
| 27 | + self.grad_fn = grad_fn |
| 28 | + self.add_entry(x0, fn(x0), grad_fn(x0)) |
| 29 | + |
| 30 | + def add_entry(self, x, f, g=None): |
| 31 | + # Store the values directly in preallocated arrays |
| 32 | + self.x_history[self.count] = x |
| 33 | + self.f_history[self.count] = f |
| 34 | + if self.g_history is not None and g is not None: |
| 35 | + self.g_history[self.count] = g |
| 36 | + self.count += 1 |
| 37 | + |
| 38 | + def get_history(self): |
| 39 | + # Return trimmed arrays up to the number of entries actually used |
| 40 | + x = self.x_history[: self.count] |
| 41 | + f = self.f_history[: self.count] |
| 42 | + g = self.g_history[: self.count] if self.g_history is not None else None |
| 43 | + return LBFGSHistory( |
| 44 | + x=pt.as_tensor(x, dtype="float64"), |
| 45 | + f=pt.as_tensor(f, dtype="float64"), |
| 46 | + g=pt.as_tensor(g, dtype="float64"), |
| 47 | + ) |
| 48 | + |
| 49 | + def __call__(self, x): |
| 50 | + self.add_entry(x, self.fn(x), self.grad_fn(x)) |
| 51 | + |
| 52 | + |
| 53 | +def lbfgs( |
| 54 | + fn, |
| 55 | + grad_fn, |
| 56 | + x0: np.ndarray, |
| 57 | + maxcor: int | None = None, |
| 58 | + maxiter=1000, |
| 59 | + ftol=1e-5, |
| 60 | + gtol=1e-8, |
| 61 | + maxls=1000, |
| 62 | +): |
| 63 | + def callback(xk): |
| 64 | + lbfgs_history_manager(xk) |
| 65 | + |
| 66 | + lbfgs_history_manager = LBFGSHistoryManager( |
| 67 | + fn=fn, |
| 68 | + grad_fn=grad_fn, |
| 69 | + x0=x0, |
| 70 | + maxiter=maxiter, |
| 71 | + ) |
| 72 | + |
| 73 | + # options = dict( |
| 74 | + # maxcor=maxcor, |
| 75 | + # maxiter=maxiter, |
| 76 | + # ftol=ftol, |
| 77 | + # gtol=gtol, |
| 78 | + # maxls=maxls, |
| 79 | + # ) |
| 80 | + # minimize( |
| 81 | + # fn, |
| 82 | + # x0, |
| 83 | + # method="L-BFGS-B", |
| 84 | + # jac=grad_fn, |
| 85 | + # options=options, |
| 86 | + # callback=callback, |
| 87 | + # ) |
| 88 | + fmin_l_bfgs_b( |
| 89 | + func=fn, |
| 90 | + fprime=grad_fn, |
| 91 | + x0=x0, |
| 92 | + pgtol=gtol, |
| 93 | + factr=ftol / np.finfo(float).eps, |
| 94 | + maxls=maxls, |
| 95 | + maxiter=maxiter, |
| 96 | + m=maxcor, |
| 97 | + callback=callback, |
| 98 | + ) |
| 99 | + return lbfgs_history_manager.get_history() |
0 commit comments