@@ -2259,14 +2259,10 @@ class HalfCauchy(PositiveContinuous):
2259
2259
@classmethod
2260
2260
def dist (cls , beta , * args , ** kwargs ):
2261
2261
beta = aet .as_tensor_variable (floatX (beta ))
2262
-
2263
- # mode = aet.as_tensor_variable(0)
2264
- # median = beta
2265
-
2266
2262
assert_negative_support (beta , "beta" , "HalfCauchy" )
2267
- return super ().dist ([beta ], ** kwargs )
2263
+ return super ().dist ([0.0 , beta ], ** kwargs )
2268
2264
2269
- def logp (value , beta , alpha ):
2265
+ def logp (value , loc , beta ):
2270
2266
"""
2271
2267
Calculate log-probability of HalfCauchy distribution at specified value.
2272
2268
@@ -2281,12 +2277,12 @@ def logp(value, beta, alpha):
2281
2277
TensorVariable
2282
2278
"""
2283
2279
return bound (
2284
- aet .log (2 ) - aet .log (np .pi ) - aet .log (beta ) - aet .log1p ((value / beta ) ** 2 ),
2285
- value >= 0 ,
2280
+ aet .log (2 ) - aet .log (np .pi ) - aet .log (beta ) - aet .log1p ((( value - loc ) / beta ) ** 2 ),
2281
+ value >= loc ,
2286
2282
beta > 0 ,
2287
2283
)
2288
2284
2289
- def logcdf (value , beta , alpha ):
2285
+ def logcdf (value , loc , beta ):
2290
2286
"""
2291
2287
Compute the log of the cumulative distribution function for HalfCauchy distribution
2292
2288
at the specified value.
@@ -2302,8 +2298,8 @@ def logcdf(value, beta, alpha):
2302
2298
TensorVariable
2303
2299
"""
2304
2300
return bound (
2305
- aet .log (2 * aet .arctan (value / beta ) / np .pi ),
2306
- 0 <= value ,
2301
+ aet .log (2 * aet .arctan (( value - loc ) / beta ) / np .pi ),
2302
+ loc <= value ,
2307
2303
0 < beta ,
2308
2304
)
2309
2305
0 commit comments