40
40
41
41
with model :
42
42
for i in range (n + 1 ):
43
- s = {'p' :0.5 , 'surv_sim' :i }
43
+ s = {'p' : 0.5 , 'surv_sim' : i }
44
44
map_est = mc .find_MAP (start = s , vars = model .vars ,
45
45
fmin = mc .starting .optimize .fmin_bfgs )
46
46
print ('surv_sim: %i->%i, p: %f->%f, LogP:%f' % (s ['surv_sim' ],
58
58
59
59
with model :
60
60
for i in range (n + 1 ):
61
- s = {'p' :0.5 , 'surv_sim' :i }
61
+ s = {'p' : 0.5 , 'surv_sim' : i }
62
62
map_est = mc .find_MAP (start = s , vars = model .vars )
63
63
print ('surv_sim: %i->%i, p: %f->%f, LogP:%f' % (s ['surv_sim' ],
64
64
map_est ['surv_sim' ],
74
74
# near found minimums. Because it has a slightly different interface to other
75
75
# minimization schemes we have to define a wrapper function.
76
76
77
- def bh (* args ,** kwargs ):
77
+
78
+ def bh (* args , ** kwargs ):
78
79
result = mc .starting .optimize .basinhopping (* args , ** kwargs )
79
80
# A `Result` object is returned, the argmin value can be in `x`
80
81
return result ['x' ]
81
82
82
83
with model :
83
84
for i in range (n + 1 ):
84
- s = {'p' :0.5 , 'surv_sim' :i }
85
+ s = {'p' : 0.5 , 'surv_sim' : i }
85
86
map_est = mc .find_MAP (start = s , vars = model .vars , fmin = bh )
86
87
print ('surv_sim: %i->%i, p: %f->%f, LogP:%f' % (s ['surv_sim' ],
87
88
map_est ['surv_sim' ],
@@ -95,7 +96,7 @@ def bh(*args,**kwargs):
95
96
96
97
with model :
97
98
for i in range (n + 1 ):
98
- s = {'p' :0.5 , 'surv_sim' :i }
99
+ s = {'p' : 0.5 , 'surv_sim' : i }
99
100
map_est = mc .find_MAP (start = s , vars = model .vars ,
100
101
fmin = bh , minimizer_kwargs = {"method" : "Powell" })
101
102
print ('surv_sim: %i->%i, p: %f->%f, LogP:%f' % (s ['surv_sim' ],
@@ -112,6 +113,6 @@ def bh(*args,**kwargs):
112
113
step2 = mc .step_methods .Metropolis (vars = [surv_sim ])
113
114
114
115
with model :
115
- trace = mc .sample (25000 ,[step1 ,step2 ],start = map_est )
116
+ trace = mc .sample (25000 , [step1 , step2 ], start = map_est )
116
117
117
118
mc .traceplot (trace );
0 commit comments