@@ -26,16 +26,16 @@ def simple_model():
26
26
mu = - 2.1
27
27
tau = 1.3
28
28
with Model () as model :
29
- Normal ('x' , mu , tau = tau , shape = 2 , testval = tt .ones (2 ) * .1 )
29
+ Normal ("x" , mu , tau = tau , shape = 2 , testval = tt .ones (2 ) * 0 .1 )
30
30
31
- return model .test_point , model , (mu , tau ** - .5 )
31
+ return model .test_point , model , (mu , tau ** - 0 .5 )
32
32
33
33
34
34
def simple_categorical ():
35
35
p = floatX_array ([0.1 , 0.2 , 0.3 , 0.4 ])
36
36
v = floatX_array ([0.0 , 1.0 , 2.0 , 3.0 ])
37
37
with Model () as model :
38
- Categorical ('x' , p , shape = 3 , testval = [1 , 2 , 3 ])
38
+ Categorical ("x" , p , shape = 3 , testval = [1 , 2 , 3 ])
39
39
40
40
mu = np .dot (p , v )
41
41
var = np .dot (p , (v - mu ) ** 2 )
@@ -46,9 +46,9 @@ def multidimensional_model():
46
46
mu = - 2.1
47
47
tau = 1.3
48
48
with Model () as model :
49
- Normal ('x' , mu , tau = tau , shape = (3 , 2 ), testval = .1 * tt .ones ((3 , 2 )))
49
+ Normal ("x" , mu , tau = tau , shape = (3 , 2 ), testval = 0 .1 * tt .ones ((3 , 2 )))
50
50
51
- return model .test_point , model , (mu , tau ** - .5 )
51
+ return model .test_point , model , (mu , tau ** - 0 .5 )
52
52
53
53
54
54
def simple_arbitrary_det ():
@@ -59,50 +59,52 @@ def arbitrary_det(value):
59
59
return value
60
60
61
61
with Model () as model :
62
- a = Normal ('a' )
62
+ a = Normal ("a" )
63
63
b = arbitrary_det (a )
64
- Normal (' obs' , mu = b .astype (' float64' ), observed = floatX_array ([1 , 3 , 5 ]))
64
+ Normal (" obs" , mu = b .astype (" float64" ), observed = floatX_array ([1 , 3 , 5 ]))
65
65
66
66
return model .test_point , model
67
67
68
68
69
69
def simple_init ():
70
70
start , model , moments = simple_model ()
71
- step = Metropolis (model .vars , np .diag ([1. ]), model = model )
71
+ step = Metropolis (model .vars , np .diag ([1.0 ]), model = model )
72
72
return model , start , step , moments
73
73
74
74
75
75
def simple_2model ():
76
76
mu = - 2.1
77
77
tau = 1.3
78
- p = .4
78
+ p = 0 .4
79
79
with Model () as model :
80
- x = pm .Normal ('x' , mu , tau = tau , testval = .1 )
81
- pm .Deterministic (' logx' , tt .log (x ))
82
- pm .Bernoulli ('y' , p )
80
+ x = pm .Normal ("x" , mu , tau = tau , testval = 0 .1 )
81
+ pm .Deterministic (" logx" , tt .log (x ))
82
+ pm .Bernoulli ("y" , p )
83
83
return model .test_point , model
84
84
85
85
86
86
def simple_2model_continuous ():
87
87
mu = - 2.1
88
88
tau = 1.3
89
89
with Model () as model :
90
- x = pm .Normal ('x' , mu , tau = tau , testval = .1 )
91
- pm .Deterministic (' logx' , tt .log (x ))
92
- pm .Beta ('y' , alpha = 1 , beta = 1 , shape = 2 )
90
+ x = pm .Normal ("x" , mu , tau = tau , testval = 0 .1 )
91
+ pm .Deterministic (" logx" , tt .log (x ))
92
+ pm .Beta ("y" , alpha = 1 , beta = 1 , shape = 2 )
93
93
return model .test_point , model
94
94
95
95
96
96
def mv_simple ():
97
- mu = floatX_array ([- .1 , .5 , 1.1 ])
98
- p = floatX_array ([
99
- [2. , 0 , 0 ],
100
- [.05 , .1 , 0 ],
101
- [1. , - 0.05 , 5.5 ]])
97
+ mu = floatX_array ([- 0.1 , 0.5 , 1.1 ])
98
+ p = floatX_array ([[2.0 , 0 , 0 ], [0.05 , 0.1 , 0 ], [1.0 , - 0.05 , 5.5 ]])
102
99
tau = np .dot (p , p .T )
103
100
with pm .Model () as model :
104
- pm .MvNormal ('x' , tt .constant (mu ), tau = tt .constant (tau ),
105
- shape = 3 , testval = floatX_array ([.1 , 1. , .8 ]))
101
+ pm .MvNormal (
102
+ "x" ,
103
+ tt .constant (mu ),
104
+ tau = tt .constant (tau ),
105
+ shape = 3 ,
106
+ testval = floatX_array ([0.1 , 1.0 , 0.8 ]),
107
+ )
106
108
H = tau
107
109
C = np .linalg .inv (H )
108
110
return model .test_point , model , (mu , C )
@@ -145,9 +147,9 @@ def mv_simple_very_coarse():
145
147
def mv_simple_discrete ():
146
148
d = 2
147
149
n = 5
148
- p = floatX_array ([.15 , .85 ])
150
+ p = floatX_array ([0 .15 , 0 .85 ])
149
151
with pm .Model () as model :
150
- pm .Multinomial ('x' , n , tt .constant (p ), shape = d , testval = np .array ([1 , 4 ]))
152
+ pm .Multinomial ("x" , n , tt .constant (p ), shape = d , testval = np .array ([1 , 4 ]))
151
153
mu = n * p
152
154
# covariance matrix
153
155
C = np .zeros ((d , d ))
@@ -180,30 +182,29 @@ def mv_prior_simple():
180
182
std_post = (K - np .dot (v .T , v )).diagonal () ** 0.5
181
183
182
184
with pm .Model () as model :
183
- x = pm .Flat ('x' , shape = n )
184
- x_obs = pm .MvNormal ('x_obs' , observed = obs , mu = x ,
185
- cov = noise * np .eye (n ), shape = n )
185
+ x = pm .Flat ("x" , shape = n )
186
+ x_obs = pm .MvNormal ("x_obs" , observed = obs , mu = x , cov = noise * np .eye (n ), shape = n )
186
187
187
188
return model .test_point , model , (K , L , mu_post , std_post , noise )
188
189
189
190
190
191
def non_normal (n = 2 ):
191
192
with pm .Model () as model :
192
- pm .Beta ('x' , 3 , 3 , shape = n , transform = None )
193
- return model .test_point , model , (np .tile ([.5 ], n ), None )
193
+ pm .Beta ("x" , 3 , 3 , shape = n , transform = None )
194
+ return model .test_point , model , (np .tile ([0 .5 ], n ), None )
194
195
195
196
196
197
def exponential_beta (n = 2 ):
197
198
with pm .Model () as model :
198
- pm .Beta ('x' , 3 , 1 , shape = n , transform = None )
199
- pm .Exponential ('y' , 1 , shape = n , transform = None )
199
+ pm .Beta ("x" , 3 , 1 , shape = n , transform = None )
200
+ pm .Exponential ("y" , 1 , shape = n , transform = None )
200
201
return model .test_point , model , None
201
202
202
203
203
204
def beta_bernoulli (n = 2 ):
204
205
with pm .Model () as model :
205
- pm .Beta ('x' , 3 , 1 , shape = n , transform = None )
206
- pm .Bernoulli ('y' , 0.5 )
206
+ pm .Beta ("x" , 3 , 1 , shape = n , transform = None )
207
+ pm .Bernoulli ("y" , 0.5 )
207
208
return model .test_point , model , None
208
209
209
210
0 commit comments