@@ -394,29 +394,28 @@ Simulations::
394
394
>>> def trial():
395
395
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
396
396
...
397
- >>> sum(trial() for i in range(10000 )) / 10000
397
+ >>> sum(trial() for i in range(10_000 )) / 10_000
398
398
0.4169
399
399
400
400
>>> # Probability of the median of 5 samples being in middle two quartiles
401
401
>>> def trial():
402
- ... return 2500 <= sorted(choices(range(10000 ), k=5))[2] < 7500
402
+ ... return 2_500 <= sorted(choices(range(10_000 ), k=5))[2] < 7_500
403
403
...
404
- >>> sum(trial() for i in range(10000 )) / 10000
404
+ >>> sum(trial() for i in range(10_000 )) / 10_000
405
405
0.7958
406
406
407
407
Example of `statistical bootstrapping
408
408
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)> `_ using resampling
409
- with replacement to estimate a confidence interval for the mean of a sample of
410
- size five::
409
+ with replacement to estimate a confidence interval for the mean of a sample::
411
410
412
411
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
413
412
from statistics import fmean as mean
414
413
from random import choices
415
414
416
- data = 1, 2, 4, 4, 10
417
- means = sorted(mean(choices(data, k=5)) for i in range(20 ))
415
+ data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
416
+ means = sorted(mean(choices(data, k=len(data))) for i in range(100 ))
418
417
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
419
- f'interval from {means[1 ]:.1f} to {means[-2 ]:.1f}')
418
+ f'interval from {means[5 ]:.1f} to {means[94 ]:.1f}')
420
419
421
420
Example of a `resampling permutation test
422
421
<https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests> `_
@@ -432,7 +431,7 @@ between the effects of a drug versus a placebo::
432
431
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
433
432
observed_diff = mean(drug) - mean(placebo)
434
433
435
- n = 10000
434
+ n = 10_000
436
435
count = 0
437
436
combined = drug + placebo
438
437
for i in range(n):
@@ -445,32 +444,29 @@ between the effects of a drug versus a placebo::
445
444
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
446
445
print(f'hypothesis that there is no difference between the drug and the placebo.')
447
446
448
- Simulation of arrival times and service deliveries in a single server queue::
447
+ Simulation of arrival times and service deliveries for a multiserver queue::
449
448
449
+ from heapq import heappush, heappop
450
450
from random import expovariate, gauss
451
451
from statistics import mean, median, stdev
452
452
453
453
average_arrival_interval = 5.6
454
- average_service_time = 5.0
455
- stdev_service_time = 0.5
456
-
457
- num_waiting = 0
458
- arrivals = []
459
- starts = []
460
- arrival = service_end = 0.0
461
- for i in range(20000):
462
- if arrival <= service_end:
463
- num_waiting += 1
464
- arrival += expovariate(1.0 / average_arrival_interval)
465
- arrivals.append(arrival)
466
- else:
467
- num_waiting -= 1
468
- service_start = service_end if num_waiting else arrival
469
- service_time = gauss(average_service_time, stdev_service_time)
470
- service_end = service_start + service_time
471
- starts.append(service_start)
472
-
473
- waits = [start - arrival for arrival, start in zip(arrivals, starts)]
454
+ average_service_time = 15.0
455
+ stdev_service_time = 3.5
456
+ num_servers = 3
457
+
458
+ waits = []
459
+ arrival_time = 0.0
460
+ servers = [0.0] * num_servers # time when each server becomes available
461
+ for i in range(100_000):
462
+ arrival_time += expovariate(1.0 / average_arrival_interval)
463
+ next_server_available = heappop(servers)
464
+ wait = max(0.0, next_server_available - arrival_time)
465
+ waits.append(wait)
466
+ service_duration = gauss(average_service_time, stdev_service_time)
467
+ service_completed = arrival_time + wait + service_duration
468
+ heappush(servers, service_completed)
469
+
474
470
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
475
471
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')
476
472
0 commit comments