Skip to content

Commit 7d65c04

Browse files
Small improvements to the recipes and examples. (GH-19635) (GH-19638)
* Add underscores to long numbers to improve readability * Use bigger dataset in the bootstrapping example * Convert single-server queue example to more useful multi-server queue (cherry picked from commit d3a8d61)
1 parent 41660ca commit 7d65c04

File tree

1 file changed

+26
-30
lines changed

1 file changed

+26
-30
lines changed

Doc/library/random.rst

Lines changed: 26 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -394,29 +394,28 @@ Simulations::
394394
>>> def trial():
395395
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
396396
...
397-
>>> sum(trial() for i in range(10000)) / 10000
397+
>>> sum(trial() for i in range(10_000)) / 10_000
398398
0.4169
399399

400400
>>> # Probability of the median of 5 samples being in middle two quartiles
401401
>>> def trial():
402-
... return 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
402+
... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
403403
...
404-
>>> sum(trial() for i in range(10000)) / 10000
404+
>>> sum(trial() for i in range(10_000)) / 10_000
405405
0.7958
406406

407407
Example of `statistical bootstrapping
408408
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
409-
with replacement to estimate a confidence interval for the mean of a sample of
410-
size five::
409+
with replacement to estimate a confidence interval for the mean of a sample::
411410

412411
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
413412
from statistics import fmean as mean
414413
from random import choices
415414

416-
data = 1, 2, 4, 4, 10
417-
means = sorted(mean(choices(data, k=5)) for i in range(20))
415+
data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
416+
means = sorted(mean(choices(data, k=len(data))) for i in range(100))
418417
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
419-
f'interval from {means[1]:.1f} to {means[-2]:.1f}')
418+
f'interval from {means[5]:.1f} to {means[94]:.1f}')
420419

421420
Example of a `resampling permutation test
422421
<https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests>`_
@@ -432,7 +431,7 @@ between the effects of a drug versus a placebo::
432431
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
433432
observed_diff = mean(drug) - mean(placebo)
434433

435-
n = 10000
434+
n = 10_000
436435
count = 0
437436
combined = drug + placebo
438437
for i in range(n):
@@ -445,32 +444,29 @@ between the effects of a drug versus a placebo::
445444
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
446445
print(f'hypothesis that there is no difference between the drug and the placebo.')
447446

448-
Simulation of arrival times and service deliveries in a single server queue::
447+
Simulation of arrival times and service deliveries for a multiserver queue::
449448

449+
from heapq import heappush, heappop
450450
from random import expovariate, gauss
451451
from statistics import mean, median, stdev
452452

453453
average_arrival_interval = 5.6
454-
average_service_time = 5.0
455-
stdev_service_time = 0.5
456-
457-
num_waiting = 0
458-
arrivals = []
459-
starts = []
460-
arrival = service_end = 0.0
461-
for i in range(20000):
462-
if arrival <= service_end:
463-
num_waiting += 1
464-
arrival += expovariate(1.0 / average_arrival_interval)
465-
arrivals.append(arrival)
466-
else:
467-
num_waiting -= 1
468-
service_start = service_end if num_waiting else arrival
469-
service_time = gauss(average_service_time, stdev_service_time)
470-
service_end = service_start + service_time
471-
starts.append(service_start)
472-
473-
waits = [start - arrival for arrival, start in zip(arrivals, starts)]
454+
average_service_time = 15.0
455+
stdev_service_time = 3.5
456+
num_servers = 3
457+
458+
waits = []
459+
arrival_time = 0.0
460+
servers = [0.0] * num_servers # time when each server becomes available
461+
for i in range(100_000):
462+
arrival_time += expovariate(1.0 / average_arrival_interval)
463+
next_server_available = heappop(servers)
464+
wait = max(0.0, next_server_available - arrival_time)
465+
waits.append(wait)
466+
service_duration = gauss(average_service_time, stdev_service_time)
467+
service_completed = arrival_time + wait + service_duration
468+
heappush(servers, service_completed)
469+
474470
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
475471
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')
476472

0 commit comments

Comments
 (0)