Skip to content

Commit 15082c4

Browse files
authored
feat: Add dryrun feature to Dynamo paths (#2451)
1 parent 31e47d3 commit 15082c4

File tree

11 files changed

+469
-42
lines changed

11 files changed

+469
-42
lines changed
Lines changed: 292 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,292 @@
1+
import logging
2+
import math
3+
import operator
4+
import os
5+
from dataclasses import dataclass, field
6+
from typing import Any, Dict, List, Union
7+
8+
import torch
9+
from torch_tensorrt.dynamo._settings import CompilationSettings
10+
from torch_tensorrt.dynamo.conversion._ConverterRegistry import ConverterRegistry
11+
from torch_tensorrt.dynamo.conversion.converter_utils import get_node_name
12+
13+
logger = logging.getLogger(__name__)
14+
15+
16+
@dataclass
17+
class PerSubgraphData:
18+
"""Class to track data on a per-subgraph level
19+
20+
Args:
21+
subgraph_name (str): Name of the subgraph in the GraphModule
22+
subgraph_op_count (int): Number of operations in the subgraph
23+
subgraph_input_shapes (Any): Shapes of input Tensors of the subgraph
24+
subgraph_input_dtypes (Any): Input data types of the subgraph
25+
subgraph_output_shapes (Any): Shapes of output Tensors of the subgraph
26+
subgraph_output_dtypes (Any): Output data types of the subgraph
27+
"""
28+
29+
subgraph_name: str = ""
30+
subgraph_op_count: int = 0
31+
subgraph_input_shapes: Any = field(default_factory=list)
32+
subgraph_input_dtypes: Any = field(default_factory=list)
33+
subgraph_output_shapes: Any = field(default_factory=list)
34+
subgraph_output_dtypes: Any = field(default_factory=list)
35+
36+
37+
@dataclass
38+
class DryRunTracker:
39+
"""Class to track data on a graph-wide level
40+
41+
Args:
42+
total_ops_in_graph (int): Total number of operators in graph
43+
supported_ops_in_graph (int): Number of supported operators in graph
44+
graph_input_shapes (Any): Shapes of input Tensors of the graph
45+
graph_input_dtypes (Any): Input data types of the graph
46+
graph_output_shapes (Any): Shapes of output Tensors of the graph
47+
graph_output_dtypes (Any): Output data types of the graph
48+
per_subgraph_data (List[PerSubgraphData]): Per-subgraph data, see above class
49+
tensorrt_graph_count (int): Number of TensorRT engines to be generated
50+
compilation_settings (CompilationSettings): User Compilation Settings
51+
unsupported_ops (Dict[str, int]): Set of operators not supported in TRT
52+
to_run_in_torch (List[str]): Set of nodes to run in Torch
53+
"""
54+
55+
total_ops_in_graph: int = 0
56+
supported_ops_in_graph: int = 0
57+
graph_input_shapes: Any = field(default_factory=list)
58+
graph_input_dtypes: Any = field(default_factory=list)
59+
graph_output_shapes: Any = field(default_factory=list)
60+
graph_output_dtypes: Any = field(default_factory=list)
61+
per_subgraph_data: List[PerSubgraphData] = field(default_factory=list)
62+
tensorrt_graph_count: int = 0
63+
compilation_settings: CompilationSettings = field(
64+
default_factory=CompilationSettings
65+
)
66+
unsupported_ops: Dict[str, int] = field(default_factory=dict)
67+
to_run_in_torch: List[str] = field(default_factory=list)
68+
69+
70+
def dryrun_stats_display(
71+
dryrun_tracker: DryRunTracker, dryrun_enabled: Union[bool, str]
72+
) -> None:
73+
"""Displays statistics about the dryrun either to debug logs or stdout"""
74+
formatted_stats = "\n"
75+
76+
# Print overall stats about the graph, operator counts, etc.
77+
formatted_stats += "+" * 50 + " Dry-Run Results for Graph " + "+" * 50 + "\n\n"
78+
formatted_stats += (
79+
f"The graph consists of {dryrun_tracker.total_ops_in_graph} Total Operators, "
80+
f"of which {dryrun_tracker.supported_ops_in_graph} operators are supported, "
81+
f"{round(dryrun_tracker.supported_ops_in_graph*100/dryrun_tracker.total_ops_in_graph, 2)}% coverage\n\n"
82+
)
83+
if dryrun_tracker.unsupported_ops:
84+
parsed_ops = "\n".join(
85+
[f"{str(k)}: {str(v)}" for k, v in dryrun_tracker.unsupported_ops.items()]
86+
)
87+
formatted_stats += f"The following ops are currently unsupported or excluded from conversion, and are listed with their op-count in the graph:\n {parsed_ops}\n\n"
88+
89+
if dryrun_tracker.to_run_in_torch:
90+
formatted_nodes = "\n".join(dryrun_tracker.to_run_in_torch)
91+
formatted_stats += (
92+
f"The following nodes are currently set to run in Torch:\n{formatted_nodes}\n"
93+
"Note: Some of the above nodes may be supported, but were not included in a TRT graph by the partitioner\n\n"
94+
)
95+
96+
formatted_stats += f"Compiled with: {dryrun_tracker.compilation_settings}\n\n"
97+
98+
assert len(dryrun_tracker.per_subgraph_data) == dryrun_tracker.tensorrt_graph_count
99+
100+
# Print schematic of the graph structure, as in:
101+
#
102+
# Inputs: List[Tensor: (1, 3, 224, 224)@float32]
103+
# ...
104+
# TRT Engine #1 - Submodule name: _run_on_acc_0
105+
# Engine Inputs: List[Tensor: (1, 3, 224, 224)@float32]
106+
# Number of Operators in Engine: 1
107+
# Engine Outputs: Tensor: (1, 64, 112, 112)@float32
108+
# ...
109+
# Outputs: List[Tensor: (1, 1000)@float32]
110+
#
111+
formatted_stats += " " * 2 + "Graph Structure:\n\n"
112+
formatted_stats += (
113+
" " * 3
114+
+ f"Inputs: {input_formatter(dryrun_tracker.graph_input_shapes, dryrun_tracker.graph_input_dtypes)}\n"
115+
)
116+
117+
for i, trt_subgraph_data in enumerate(dryrun_tracker.per_subgraph_data):
118+
formatted_stats += " " * 4 + "...\n"
119+
formatted_stats += (
120+
" " * 4
121+
+ f"TRT Engine #{i+1} - Submodule name: {trt_subgraph_data.subgraph_name}\n"
122+
)
123+
formatted_stats += (
124+
" " * 5
125+
+ f"Engine Inputs: {input_formatter(trt_subgraph_data.subgraph_input_shapes, trt_subgraph_data.subgraph_input_dtypes)}\n"
126+
)
127+
formatted_stats += (
128+
" " * 5
129+
+ f"Number of Operators in Engine: {trt_subgraph_data.subgraph_op_count}\n"
130+
)
131+
formatted_stats += (
132+
" " * 5
133+
+ f"Engine Outputs: {input_formatter(trt_subgraph_data.subgraph_output_shapes, trt_subgraph_data.subgraph_output_dtypes)}\n"
134+
)
135+
136+
formatted_stats += " " * 4 + "...\n"
137+
formatted_stats += (
138+
" " * 3
139+
+ f"Outputs: {input_formatter(dryrun_tracker.graph_output_shapes, dryrun_tracker.graph_output_dtypes)}\n"
140+
)
141+
142+
# Print aggregate statistics about the graph structure, including recommended "min_block_size" options
143+
if dryrun_tracker.tensorrt_graph_count > 0:
144+
min_ops_in_an_engine = min(
145+
trt_subgraph.subgraph_op_count
146+
for trt_subgraph in dryrun_tracker.per_subgraph_data
147+
)
148+
avg_ops_per_engine = (
149+
sum(
150+
trt_subgraph.subgraph_op_count
151+
for trt_subgraph in dryrun_tracker.per_subgraph_data
152+
)
153+
/ dryrun_tracker.tensorrt_graph_count
154+
)
155+
avg_ops_per_engine = round(avg_ops_per_engine, 2)
156+
most_ops_in_an_engine = max(
157+
trt_subgraph.subgraph_op_count
158+
for trt_subgraph in dryrun_tracker.per_subgraph_data
159+
)
160+
161+
formatted_stats += "\n" + " " * 2 + "-" * 25 + " Aggregate Stats " + "-" * 25
162+
formatted_stats += (
163+
"\n\n"
164+
+ " " * 3
165+
+ "Average Number of Operators per TRT Engine: "
166+
+ f"{avg_ops_per_engine}"
167+
)
168+
169+
formatted_stats += (
170+
"\n"
171+
+ " " * 3
172+
+ "Most Operators in a TRT Engine: "
173+
+ f"{most_ops_in_an_engine}"
174+
)
175+
176+
formatted_stats += "\n\n" + " " * 2 + "*" * 10 + " Recommendations " + "*" * 10
177+
formatted_stats += (
178+
"\n\n"
179+
+ " " * 3
180+
+ "- For minimal graph segmentation, select min_block_size="
181+
+ f"{most_ops_in_an_engine} which would generate "
182+
+ f"{len([1 for trt_subgraph in dryrun_tracker.per_subgraph_data if trt_subgraph.subgraph_op_count >= most_ops_in_an_engine])} TRT engine(s)"
183+
)
184+
if math.ceil(avg_ops_per_engine) != most_ops_in_an_engine:
185+
formatted_stats += (
186+
"\n"
187+
+ " " * 3
188+
+ "- For moderate graph segmentation, select min_block_size="
189+
+ f"{math.ceil(avg_ops_per_engine)} which would generate "
190+
+ f"{len([1 for trt_subgraph in dryrun_tracker.per_subgraph_data if trt_subgraph.subgraph_op_count >= math.ceil(avg_ops_per_engine)])} TRT engine(s)"
191+
)
192+
193+
formatted_stats += (
194+
"\n"
195+
+ " " * 3
196+
+ "- The current level of graph segmentation is equivalent to selecting min_block_size="
197+
+ f"{min_ops_in_an_engine} which generates "
198+
+ f"{len([1 for trt_subgraph in dryrun_tracker.per_subgraph_data if trt_subgraph.subgraph_op_count >= min_ops_in_an_engine])} TRT engine(s)"
199+
)
200+
else:
201+
formatted_stats += (
202+
"\n"
203+
+ " " * 2
204+
+ "Aggregate stats not available since no TRT Engines were generated."
205+
)
206+
207+
# If user specified "dryrun=True", print to stdout, else debug
208+
# If user specified a filepath, save the output to the path as well
209+
if dryrun_enabled:
210+
print(formatted_stats)
211+
if isinstance(dryrun_enabled, str):
212+
if os.path.exists(dryrun_enabled):
213+
logger.warning(
214+
f"File already exists at path {dryrun_enabled}, not saving dryrun output"
215+
)
216+
else:
217+
with open(dryrun_enabled, "w+") as f:
218+
f.write(formatted_stats)
219+
else:
220+
logger.debug(formatted_stats)
221+
222+
223+
def input_formatter(shapes: Any, dtypes: Any) -> str:
224+
"""Format shapes and dtypes of input Tensors into a readable string"""
225+
226+
def input_formatter_helper(shapes: Any, dtypes: Any) -> str:
227+
"""Helper for input formatter"""
228+
# Base case - single shape, single dtype
229+
if isinstance(shapes, tuple) and all(isinstance(elt, int) for elt in shapes):
230+
return f"Tensor: {shapes}@{str(dtypes)[6:]}, "
231+
232+
# Base case - dynamic shape, single dtype
233+
elif (
234+
isinstance(shapes, dict)
235+
and len(shapes) == 3
236+
and all(
237+
(
238+
isinstance(shape, tuple)
239+
and all(isinstance(elt, int) for elt in shape)
240+
and k in ("min_shape", "opt_shape", "max_shape")
241+
)
242+
for k, shape in shapes.items()
243+
)
244+
):
245+
return f"Tensor: {shapes}@{str(dtypes)[6:]}, "
246+
247+
# Shapes is a sequence
248+
elif isinstance(shapes, (list, tuple)):
249+
formatted_str = "List[" if isinstance(shapes, list) else "Tuple("
250+
for shape, dtype in zip(shapes, dtypes):
251+
formatted_str += input_formatter_helper(shape, dtype)
252+
formatted_str = formatted_str[:-2] + (
253+
"], " if isinstance(shapes, list) else "), "
254+
)
255+
return formatted_str
256+
257+
# Shapes is a dictionary
258+
elif isinstance(shapes, dict):
259+
formatted_str = "Dict{"
260+
261+
for key, shape in shapes.items():
262+
formatted_str += input_formatter_helper(shape, dtypes[key])
263+
264+
formatted_str = formatted_str[:-2] + "}, "
265+
return formatted_str
266+
267+
else:
268+
raise ValueError(
269+
f"Invalid input type {type(shapes)} encountered in parse_complex_tensor_structs parsing."
270+
)
271+
272+
return input_formatter_helper(shapes, dtypes)[:-2]
273+
274+
275+
def parse_non_trt_nodes(graph_module: torch.fx.GraphModule) -> List[str]:
276+
"""Parses call_function and call_method nodes from a GraphModule
277+
Excludes getitem nodes
278+
279+
Returns a string representation of the nodes
280+
"""
281+
to_run_in_torch = []
282+
for node in graph_module.graph.nodes:
283+
# getitem nodes are excluded since they are a Tensor-collection op
284+
if (
285+
node.op in ("call_function", "call_method")
286+
and node.target != operator.getitem
287+
):
288+
to_run_in_torch.append(
289+
f"Node: {ConverterRegistry.qualified_name_or_str(node.target)}, "
290+
f"with layer location: {get_node_name(node)}"
291+
)
292+
return to_run_in_torch

0 commit comments

Comments
 (0)