|
| 1 | +# type: ignore |
| 2 | +import os |
| 3 | +import tempfile |
| 4 | +import unittest |
| 5 | + |
| 6 | +import pytest |
| 7 | +import timm |
| 8 | +import torch |
| 9 | +import torch.nn.functional as F |
| 10 | +import torch_tensorrt as torchtrt |
| 11 | +import torchvision.models as models |
| 12 | +from torch import nn |
| 13 | +from torch_tensorrt.dynamo.utils import COSINE_THRESHOLD, cosine_similarity |
| 14 | +from transformers import BertModel |
| 15 | +from transformers.utils.fx import symbolic_trace as transformers_trace |
| 16 | + |
| 17 | +assertions = unittest.TestCase() |
| 18 | + |
| 19 | + |
| 20 | +@pytest.mark.unit |
| 21 | +def test_custom_model(): |
| 22 | + class net(nn.Module): |
| 23 | + def __init__(self): |
| 24 | + super().__init__() |
| 25 | + self.conv1 = nn.Conv2d(3, 12, 3, padding=1) |
| 26 | + self.bn = nn.BatchNorm2d(12) |
| 27 | + self.conv2 = nn.Conv2d(12, 12, 3, padding=1) |
| 28 | + self.fc1 = nn.Linear(12 * 56 * 56, 10) |
| 29 | + |
| 30 | + def forward(self, x, b=5, c=None, d=None): |
| 31 | + x = self.conv1(x) |
| 32 | + x = F.relu(x) |
| 33 | + x = self.bn(x) |
| 34 | + x = F.max_pool2d(x, (2, 2)) |
| 35 | + x = self.conv2(x) |
| 36 | + x = F.relu(x) |
| 37 | + x = F.max_pool2d(x, (2, 2)) |
| 38 | + x = torch.flatten(x, 1) |
| 39 | + x = x + b |
| 40 | + if c is not None: |
| 41 | + x = x * c |
| 42 | + if d is not None: |
| 43 | + x = x - d["value"] |
| 44 | + return self.fc1(x) |
| 45 | + |
| 46 | + model = net().eval().to("cuda") |
| 47 | + args = [torch.rand((1, 3, 224, 224)).to("cuda")] |
| 48 | + kwargs = { |
| 49 | + "b": torch.tensor(6).to("cuda"), |
| 50 | + "d": {"value": torch.tensor(8).to("cuda")}, |
| 51 | + } |
| 52 | + |
| 53 | + compile_spec = { |
| 54 | + "inputs": args, |
| 55 | + "kwarg_inputs": kwargs, |
| 56 | + "device": torchtrt.Device("cuda:0"), |
| 57 | + "enabled_precisions": {torch.float}, |
| 58 | + "pass_through_build_failures": True, |
| 59 | + "optimization_level": 1, |
| 60 | + "min_block_size": 1, |
| 61 | + "ir": "dynamo", |
| 62 | + } |
| 63 | + # TODO: Support torchtrt.compile |
| 64 | + # trt_mod = torchtrt.compile(model, **compile_spec) |
| 65 | + |
| 66 | + exp_program = torch.export.export(model, args=tuple(args), kwargs=kwargs) |
| 67 | + trt_gm = torchtrt.dynamo.compile(exp_program, **compile_spec) |
| 68 | + cos_sim = cosine_similarity(model(*args, **kwargs), trt_gm(*args, **kwargs)[0]) |
| 69 | + assertions.assertTrue( |
| 70 | + cos_sim > COSINE_THRESHOLD, |
| 71 | + msg=f"CustomKwargs Module TRT outputs don't match with the original model. Cosine sim score: {cos_sim} Threshold: {COSINE_THRESHOLD}", |
| 72 | + ) |
| 73 | + |
| 74 | + # Save the module |
| 75 | + trt_ep_path = os.path.join(tempfile.gettempdir(), "compiled.ep") |
| 76 | + torchtrt.save(trt_gm, trt_ep_path, inputs=args, kwargs_inputs=kwargs) |
| 77 | + # Clean up model env |
| 78 | + torch._dynamo.reset() |
0 commit comments