|
| 1 | +import modelopt.torch.opt as mto |
| 2 | +import modelopt.torch.quantization as mtq |
| 3 | +import torch |
| 4 | +import torch_tensorrt |
| 5 | +from diffusers import FluxPipeline |
| 6 | +from modelopt.torch.quantization.utils import export_torch_mode |
| 7 | + |
| 8 | +# from onnx_utils.export import generate_dummy_inputs |
| 9 | +from torch.export._trace import _export |
| 10 | + |
| 11 | + |
| 12 | +def generate_image(pipe, prompt, image_name): |
| 13 | + seed = 42 |
| 14 | + image = pipe( |
| 15 | + prompt, |
| 16 | + output_type="pil", |
| 17 | + num_inference_steps=20, |
| 18 | + generator=torch.Generator("cuda").manual_seed(seed), |
| 19 | + ).images[0] |
| 20 | + image.save(f"{image_name}.png") |
| 21 | + print(f"Image generated using {image_name} model saved as {image_name}.png") |
| 22 | + |
| 23 | + |
| 24 | +device = "cuda" |
| 25 | +pipe = FluxPipeline.from_pretrained( |
| 26 | + "black-forest-labs/FLUX.1-dev", |
| 27 | + torch_dtype=torch.float16, |
| 28 | +) |
| 29 | + |
| 30 | +pipe.to(device) |
| 31 | +backbone = pipe.transformer |
| 32 | + |
| 33 | +# Restore FP8 weights |
| 34 | +mto.restore(backbone, "./schnell_fp8.pt") |
| 35 | + |
| 36 | +# dummy_inputs = generate_dummy_inputs("flux-dev", "cuda", True) |
| 37 | +batch_size = 1 |
| 38 | +BATCH = torch.export.Dim("batch", min=1, max=2) |
| 39 | +SEQ_LEN = torch.export.Dim("seq_len", min=1, max=256) |
| 40 | +dynamic_shapes = ( |
| 41 | + {0: BATCH}, |
| 42 | + {0: BATCH, 1: SEQ_LEN}, |
| 43 | + {0: BATCH}, |
| 44 | + {0: BATCH}, |
| 45 | + {0: BATCH}, |
| 46 | + {0: BATCH, 1: SEQ_LEN}, |
| 47 | +) |
| 48 | + |
| 49 | +dummy_inputs = ( |
| 50 | + torch.randn((batch_size, 4096, 64), dtype=torch.float16).to(device), |
| 51 | + torch.randn((batch_size, 256, 4096), dtype=torch.float16).to(device), |
| 52 | + torch.randn((batch_size, 768), dtype=torch.float16).to(device), |
| 53 | + torch.tensor([1.0, 1.0], dtype=torch.float16).to(device), |
| 54 | + torch.randn((batch_size, 4096, 3), dtype=torch.float16).to(device), |
| 55 | + torch.randn((batch_size, 256, 3), dtype=torch.float16).to(device), |
| 56 | +) |
| 57 | +with export_torch_mode(): |
| 58 | + ep = _export( |
| 59 | + backbone, |
| 60 | + dummy_inputs, |
| 61 | + dynamic_shapes=dynamic_shapes, |
| 62 | + strict=False, |
| 63 | + allow_complex_guards_as_runtime_asserts=True, |
| 64 | + ) |
| 65 | + |
| 66 | +with torch_tensorrt.logging.debug(): |
| 67 | + trt_gm = torch_tensorrt.dynamo.compile( |
| 68 | + ep, |
| 69 | + inputs=dummy_inputs, |
| 70 | + enabled_precisions={torch.float8_e4m3fn, torch.float16}, |
| 71 | + truncate_double=True, |
| 72 | + dryrun=True, |
| 73 | + debug=True, |
| 74 | + ) |
| 75 | + |
| 76 | + |
| 77 | +backbone.to("cpu") |
| 78 | +config = pipe.transformer.config |
| 79 | +pipe.transformer = trt_gm |
| 80 | +pipe.transformer.config = config |
| 81 | + |
| 82 | +# Generate an image |
| 83 | +generate_image(pipe, "A cat holding a sign that says hello world", "flux-dev") |
0 commit comments