Skip to content

fix: Add int support to constant_pad_nd #1283

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 6 additions & 13 deletions core/conversion/converters/impl/constant_pad.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@ auto constant_pad_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns
auto padding = args[1].unwrapToIntList().vec();
int64_t padSize = padding.size();
auto value = args[2].unwrapToScalar().to<float>();

at::Tensor value_tensor = torch::tensor(value, util::TRTDataTypeToScalarType(in->getType()));
auto valueTensor = tensor_to_const(ctx, value_tensor);
TORCHTRT_CHECK(padSize % 2 == 0, "Length of pad must be even but instead it equals " << padSize);

int64_t l_pad = padSize / 2;
Expand Down Expand Up @@ -55,10 +56,8 @@ auto constant_pad_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns
auto fill_layer = ctx->net->addFill(nvinfer1::Dims{1, {1}}, nvinfer1::FillOperation::kLINSPACE);
auto shape_gather_out = ctx->net->addShape(*left_gather_out)->getOutput(0);
fill_layer->setInput(0, *shape_gather_out);
at::Tensor value_tensor = torch::tensor(value, torch::kFloat32);
auto valueTensor = tensor_to_const(ctx, value_tensor);
fill_layer->setInput(1, *valueTensor);
at::Tensor delta_tensor = torch::zeros(inRank);
at::Tensor delta_tensor = torch::zeros(inRank, util::TRTDataTypeToScalarType(in->getType()));
auto deltaTensor = tensor_to_const(ctx, delta_tensor);
fill_layer->setInput(2, *deltaTensor);
auto padTensor = fill_layer->getOutput(0);
Expand All @@ -69,10 +68,8 @@ auto constant_pad_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns
} else {
inDims.d[axis] = padding[padding_index];
auto fill_layer = ctx->net->addFill(inDims, nvinfer1::FillOperation::kLINSPACE);
at::Tensor value_tensor = torch::tensor(value, torch::kFloat32);
auto valueTensor = tensor_to_const(ctx, value_tensor);
fill_layer->setInput(1, *valueTensor);
at::Tensor delta_tensor = torch::zeros(inRank);
at::Tensor delta_tensor = torch::zeros(inRank, util::TRTDataTypeToScalarType(in->getType()));
auto deltaTensor = tensor_to_const(ctx, delta_tensor);
fill_layer->setInput(2, *deltaTensor);
auto padTensor = fill_layer->getOutput(0);
Expand Down Expand Up @@ -112,10 +109,8 @@ auto constant_pad_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns
auto fill_layer = ctx->net->addFill(nvinfer1::Dims{1, {1}}, nvinfer1::FillOperation::kLINSPACE);
auto shape_gather_out = ctx->net->addShape(*right_gather_out)->getOutput(0);
fill_layer->setInput(0, *shape_gather_out);
at::Tensor value_tensor = torch::tensor(value, torch::kFloat32);
auto valueTensor = tensor_to_const(ctx, value_tensor);
fill_layer->setInput(1, *valueTensor);
at::Tensor delta_tensor = torch::zeros(inRank);
at::Tensor delta_tensor = torch::zeros(inRank, util::TRTDataTypeToScalarType(in->getType()));
auto deltaTensor = tensor_to_const(ctx, delta_tensor);
fill_layer->setInput(2, *deltaTensor);
auto padTensor = fill_layer->getOutput(0);
Expand All @@ -126,10 +121,8 @@ auto constant_pad_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns
} else {
inDims.d[axis] = padding[padding_index + 1];
auto fill_layer = ctx->net->addFill(inDims, nvinfer1::FillOperation::kLINSPACE);
at::Tensor value_tensor = torch::tensor(value, torch::kFloat32);
auto valueTensor = tensor_to_const(ctx, value_tensor);
fill_layer->setInput(1, *valueTensor);
at::Tensor delta_tensor = torch::zeros(inRank);
at::Tensor delta_tensor = torch::zeros(inRank, util::TRTDataTypeToScalarType(in->getType()));
auto deltaTensor = tensor_to_const(ctx, delta_tensor);
fill_layer->setInput(2, *deltaTensor);
auto padTensor = fill_layer->getOutput(0);
Expand Down
23 changes: 23 additions & 0 deletions tests/core/conversion/converters/test_constant_pad.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,29 @@ TEST(Converters, ATenConstantPad1dTensorConvertsCorrectly) {
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenConstantPad1dIntTensorConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
%1 : int[] = prim::Constant[value=[2, 3]]()
%2 : Scalar = prim::Constant[value=2]()
%3 : Tensor = aten::constant_pad_nd(%0, %1, %2)
return (%3))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

auto in1 = at::randint(1, 10, {1, 3, 4}, {at::kCUDA}).toType(at::kInt);

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenConstantPad1dRightZeroTensorConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
Expand Down