|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import os |
| 8 | +from logging import getLogger |
| 9 | +from pathlib import Path |
| 10 | +from typing import ( |
| 11 | + AbstractSet, |
| 12 | + cast, |
| 13 | + Collection, |
| 14 | + Dict, |
| 15 | + Iterator, |
| 16 | + List, |
| 17 | + Literal, |
| 18 | + Sequence, |
| 19 | + TypedDict, |
| 20 | + Union, |
| 21 | +) |
| 22 | + |
| 23 | +import tiktoken |
| 24 | +from tiktoken.load import load_tiktoken_bpe |
| 25 | + |
| 26 | + |
| 27 | +logger = getLogger(__name__) |
| 28 | + |
| 29 | + |
| 30 | +Role = Literal["system", "user", "assistant"] |
| 31 | + |
| 32 | + |
| 33 | +class Message(TypedDict): |
| 34 | + role: Role |
| 35 | + content: str |
| 36 | + |
| 37 | + |
| 38 | +Dialog = Sequence[Message] |
| 39 | + |
| 40 | + |
| 41 | +class Tokenizer: |
| 42 | + """ |
| 43 | + tokenizing and encoding/decoding text using the Tiktoken tokenizer. |
| 44 | + """ |
| 45 | + |
| 46 | + special_tokens: Dict[str, int] |
| 47 | + |
| 48 | + num_reserved_special_tokens = 256 |
| 49 | + |
| 50 | + pat_str = r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" # noqa: E501 |
| 51 | + |
| 52 | + def __init__(self, model_path: str): |
| 53 | + """ |
| 54 | + Initializes the Tokenizer with a Tiktoken model. |
| 55 | +
|
| 56 | + Args: |
| 57 | + model_path (str): The path to the Tiktoken model file. |
| 58 | + """ |
| 59 | + # reload tokenizer |
| 60 | + assert os.path.isfile(model_path), model_path |
| 61 | + |
| 62 | + mergeable_ranks = load_tiktoken_bpe(model_path) |
| 63 | + num_base_tokens = len(mergeable_ranks) |
| 64 | + special_tokens = [ |
| 65 | + "<|begin_of_text|>", |
| 66 | + "<|end_of_text|>", |
| 67 | + "<|reserved_special_token_0|>", |
| 68 | + "<|reserved_special_token_1|>", |
| 69 | + "<|reserved_special_token_2|>", |
| 70 | + "<|reserved_special_token_3|>", |
| 71 | + "<|start_header_id|>", |
| 72 | + "<|end_header_id|>", |
| 73 | + "<|reserved_special_token_4|>", |
| 74 | + "<|eot_id|>", # end of turn |
| 75 | + ] + [ |
| 76 | + f"<|reserved_special_token_{i}|>" |
| 77 | + for i in range(5, self.num_reserved_special_tokens - 5) |
| 78 | + ] |
| 79 | + self.special_tokens = { |
| 80 | + token: num_base_tokens + i for i, token in enumerate(special_tokens) |
| 81 | + } |
| 82 | + self.model = tiktoken.Encoding( |
| 83 | + name=Path(model_path).name, |
| 84 | + pat_str=self.pat_str, |
| 85 | + mergeable_ranks=mergeable_ranks, |
| 86 | + special_tokens=self.special_tokens, |
| 87 | + ) |
| 88 | + logger.info(f"Reloaded SentencePiece model from {model_path}") |
| 89 | + |
| 90 | + # BOS / EOS token IDs |
| 91 | + self.n_words: int = self.model.n_vocab |
| 92 | + self.bos_id: int = self.special_tokens["<|begin_of_text|>"] |
| 93 | + self.eos_id: int = self.special_tokens["<|end_of_text|>"] |
| 94 | + self.pad_id: int = -1 |
| 95 | + self.stop_tokens = { |
| 96 | + self.special_tokens["<|end_of_text|>"], |
| 97 | + self.special_tokens["<|eot_id|>"], |
| 98 | + } |
| 99 | + logger.info( |
| 100 | + f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" |
| 101 | + ) |
| 102 | + |
| 103 | + def encode( |
| 104 | + self, |
| 105 | + s: str, |
| 106 | + *, |
| 107 | + bos: bool, |
| 108 | + eos: bool, |
| 109 | + allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), # noqa B006 |
| 110 | + disallowed_special: Union[Literal["all"], Collection[str]] = (), |
| 111 | + ) -> List[int]: |
| 112 | + """ |
| 113 | + Encodes a string into a list of token IDs. |
| 114 | +
|
| 115 | + Args: |
| 116 | + s (str): The input string to be encoded. |
| 117 | + bos (bool): Whether to prepend the beginning-of-sequence token. |
| 118 | + eos (bool): Whether to append the end-of-sequence token. |
| 119 | + allowed_tokens ("all"|set[str]): allowed special tokens in string |
| 120 | + disallowed_tokens ("all"|set[str]): special tokens that raise an error when in string |
| 121 | +
|
| 122 | + Returns: |
| 123 | + list[int]: A list of token IDs. |
| 124 | +
|
| 125 | + By default, setting disallowed_special=() encodes a string by ignoring |
| 126 | + special tokens. Specifically: |
| 127 | + - Setting `disallowed_special` to () will cause all text corresponding |
| 128 | + to special tokens to be encoded as natural text (insteading of raising |
| 129 | + an error). |
| 130 | + - Setting `allowed_special` to "all" will treat all text corresponding |
| 131 | + to special tokens to be encoded as special tokens. |
| 132 | + """ |
| 133 | + assert type(s) is str |
| 134 | + |
| 135 | + # The tiktoken tokenizer can handle <=400k chars without |
| 136 | + # pyo3_runtime.PanicException (may go beyond 400k) |
| 137 | + TIKTOKEN_MAX_ENCODE_CHARS = 400_000 |
| 138 | + |
| 139 | + # https://github.com/openai/tiktoken/issues/195 |
| 140 | + # Here we iterate over subsequences and split if we exceed the limit |
| 141 | + # of max consecutive non-whitespace or whitespace characters. |
| 142 | + MAX_NO_WHITESPACES_CHARS = 25_000 |
| 143 | + |
| 144 | + substrs = ( |
| 145 | + substr |
| 146 | + for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS) |
| 147 | + for substr in self._split_whitespaces_or_nonwhitespaces( |
| 148 | + s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS |
| 149 | + ) |
| 150 | + ) |
| 151 | + t: List[int] = [] |
| 152 | + for substr in substrs: |
| 153 | + t.extend( |
| 154 | + self.model.encode( |
| 155 | + substr, |
| 156 | + allowed_special=allowed_special, |
| 157 | + disallowed_special=disallowed_special, |
| 158 | + ) |
| 159 | + ) |
| 160 | + if bos: |
| 161 | + t.insert(0, self.bos_id) |
| 162 | + if eos: |
| 163 | + t.append(self.eos_id) |
| 164 | + return t |
| 165 | + |
| 166 | + def decode(self, t: Sequence[int]) -> str: |
| 167 | + """ |
| 168 | + Decodes a list of token IDs into a string. |
| 169 | +
|
| 170 | + Args: |
| 171 | + t (List[int]): The list of token IDs to be decoded. |
| 172 | +
|
| 173 | + Returns: |
| 174 | + str: The decoded string. |
| 175 | + """ |
| 176 | + # typecast is safe here, Tiktoken doesn't do anything list-related with the sequence. |
| 177 | + return self.model.decode(cast(List[int], t)) |
| 178 | + |
| 179 | + @staticmethod |
| 180 | + def _split_whitespaces_or_nonwhitespaces( |
| 181 | + s: str, max_consecutive_slice_len: int |
| 182 | + ) -> Iterator[str]: |
| 183 | + """ |
| 184 | + Split the string `s` so that each substring contains no more than `max_consecutive_slice_len` |
| 185 | + consecutive whitespaces or consecutive non-whitespaces |
| 186 | + """ |
| 187 | + current_slice_len = 0 |
| 188 | + current_slice_is_space = s[0].isspace() if len(s) > 0 else False |
| 189 | + slice_start = 0 |
| 190 | + |
| 191 | + for i in range(len(s)): |
| 192 | + is_now_space = s[i].isspace() |
| 193 | + |
| 194 | + if current_slice_is_space ^ is_now_space: |
| 195 | + current_slice_len = 1 |
| 196 | + current_slice_is_space = is_now_space |
| 197 | + else: |
| 198 | + current_slice_len += 1 |
| 199 | + if current_slice_len > max_consecutive_slice_len: |
| 200 | + yield s[slice_start:i] |
| 201 | + slice_start = i |
| 202 | + current_slice_len = 1 |
| 203 | + yield s[slice_start:] |
| 204 | + |
| 205 | + |
| 206 | +class ChatFormat: |
| 207 | + def __init__(self, tokenizer: Tokenizer): |
| 208 | + self.tokenizer = tokenizer |
| 209 | + |
| 210 | + def encode_header(self, message: Message) -> List[int]: |
| 211 | + tokens = [] |
| 212 | + tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"]) |
| 213 | + tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False)) |
| 214 | + tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"]) |
| 215 | + tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False)) |
| 216 | + return tokens |
| 217 | + |
| 218 | + def encode_message(self, message: Message) -> List[int]: |
| 219 | + tokens = self.encode_header(message) |
| 220 | + tokens.extend( |
| 221 | + self.tokenizer.encode(message["content"].strip(), bos=False, eos=False) |
| 222 | + ) |
| 223 | + tokens.append(self.tokenizer.special_tokens["<|eot_id|>"]) |
| 224 | + return tokens |
| 225 | + |
| 226 | + def encode_dialog_prompt(self, dialog: Dialog) -> List[int]: |
| 227 | + tokens = [] |
| 228 | + tokens.append(self.tokenizer.special_tokens["<|begin_of_text|>"]) |
| 229 | + for message in dialog: |
| 230 | + tokens.extend(self.encode_message(message)) |
| 231 | + # Add the start of an assistant message for the model to complete |
| 232 | + tokens.extend(self.encode_header({"role": "assistant", "content": ""})) |
| 233 | + return tokens |
0 commit comments