|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-strict |
| 8 | + |
| 9 | +import torch |
| 10 | + |
| 11 | +from executorch.exir.dialects._ops import ops as exir_ops |
| 12 | +from executorch.exir.pass_base import ExportPass, PassResult |
| 13 | + |
| 14 | + |
| 15 | +class FuseDequantLinearPass(ExportPass): |
| 16 | + """ |
| 17 | + Fuses weight dequantize_per_channel nodes with linear nodes into |
| 18 | + weight_int8pack_mm nodes, for 8-bit weight-only quantization. |
| 19 | +
|
| 20 | + Replaces dq(weight) -> linear(activation, dq) with weight_int8pack_mm |
| 21 | + Replaces dq(weight) -> linear(activation, dq, bias) with weight_int8pack_mm -> add |
| 22 | + """ |
| 23 | + |
| 24 | + def fuse_dequant_with_linear( |
| 25 | + self, |
| 26 | + graph_module: torch.fx.GraphModule, |
| 27 | + dequant_node: torch.fx.Node, |
| 28 | + linear_node: torch.fx.Node, |
| 29 | + ) -> None: |
| 30 | + activations = linear_node.args[0] |
| 31 | + bias = None |
| 32 | + if len(linear_node.args) > 2: |
| 33 | + bias = linear_node.args[2] |
| 34 | + quant_weight = dequant_node.args[0] |
| 35 | + scale = dequant_node.args[1] |
| 36 | + |
| 37 | + with graph_module.graph.inserting_before(linear_node): |
| 38 | + weight_int8pack_mm_node = graph_module.graph.create_node( |
| 39 | + "call_function", |
| 40 | + exir_ops.edge.aten._weight_int8pack_mm.default, |
| 41 | + (activations, quant_weight, scale), |
| 42 | + ) |
| 43 | + if bias: |
| 44 | + add_node = graph_module.graph.create_node( |
| 45 | + "call_function", |
| 46 | + exir_ops.edge.aten.add.Tensor, |
| 47 | + (weight_int8pack_mm_node, bias), |
| 48 | + ) |
| 49 | + linear_node.replace_all_uses_with(add_node) |
| 50 | + else: |
| 51 | + linear_node.replace_all_uses_with(weight_int8pack_mm_node) |
| 52 | + graph_module.graph.erase_node(linear_node) |
| 53 | + graph_module.graph.erase_node(dequant_node) |
| 54 | + |
| 55 | + def is_node_target( |
| 56 | + self, node: torch.fx.Node, target: torch._ops.OperatorBase |
| 57 | + ) -> bool: |
| 58 | + return node.op == "call_function" and node.target == target |
| 59 | + |
| 60 | + def call(self, graph_module: torch.fx.GraphModule) -> PassResult: |
| 61 | + for node in graph_module.graph.nodes: |
| 62 | + if self.is_node_target(node, exir_ops.edge.aten.linear.default): |
| 63 | + weight_node = node.args[1] |
| 64 | + if self.is_node_target( |
| 65 | + weight_node, |
| 66 | + exir_ops.edge.quantized_decomposed.dequantize_per_channel.default, |
| 67 | + ): |
| 68 | + # only fuse if weight tensor is int8 packed |
| 69 | + quant_weight = weight_node.args[0] |
| 70 | + if quant_weight.meta["val"].dtype != torch.int8: |
| 71 | + continue |
| 72 | + self.fuse_dequant_with_linear(graph_module, weight_node, node) |
| 73 | + |
| 74 | + graph_module.recompile() |
| 75 | + graph_module = super().call(graph_module).graph_module |
| 76 | + |
| 77 | + return PassResult(graph_module, True) |
0 commit comments