|
| 1 | +// (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. |
| 2 | +#include <executorch/backends/cadence/hifi/kernels/kernels.h> |
| 3 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 4 | + |
| 5 | +#include <algorithm> |
| 6 | +#include <cmath> |
| 7 | + |
| 8 | +namespace cadence { |
| 9 | +namespace impl { |
| 10 | +namespace HiFi { |
| 11 | +namespace native { |
| 12 | + |
| 13 | +using ::executorch::aten::ArrayRef; |
| 14 | +using ::executorch::aten::IntArrayRef; |
| 15 | +using ::executorch::aten::optional; |
| 16 | +using ::executorch::aten::Scalar; |
| 17 | +using ::executorch::aten::ScalarType; |
| 18 | +using ::executorch::aten::SizesType; |
| 19 | +using ::executorch::aten::Tensor; |
| 20 | +using ::executorch::runtime::KernelRuntimeContext; |
| 21 | + |
| 22 | +void inline _quantized_fully_connected_asym8u( |
| 23 | + const Tensor& in, |
| 24 | + const Tensor& weight, |
| 25 | + const Tensor& bias, |
| 26 | + int64_t in_zero_point, |
| 27 | + const Tensor& weight_zero_point, |
| 28 | + const Tensor& out_multiplier, |
| 29 | + const Tensor& out_shift, |
| 30 | + int64_t out_zero_point, |
| 31 | + __ET_UNUSED const optional<Tensor>& offset, |
| 32 | + Tensor& out) { |
| 33 | + // input comes in shape [leading_dims, in_dim] |
| 34 | + // weight comes in shape [out_dim, in_dim] |
| 35 | + // output comes in empty with shape [leading_dims, out_dim] |
| 36 | + // Perform matrix multiply (M x N) x (N x P)' => M x P |
| 37 | + int64_t leading_dims = 1; |
| 38 | + int64_t out_dim = weight.size(0); // = out_dim |
| 39 | + int64_t in_dim = weight.size(1); // = in_dim |
| 40 | + |
| 41 | + const uint8_t* __restrict__ in_data = in.const_data_ptr<uint8_t>(); |
| 42 | + const uint8_t* __restrict__ weight_data = weight.const_data_ptr<uint8_t>(); |
| 43 | + const int32_t* __restrict__ bias_data = bias.const_data_ptr<int32_t>(); |
| 44 | + uint8_t* __restrict__ out_data = out.mutable_data_ptr<uint8_t>(); |
| 45 | + |
| 46 | + int32_t ret = xa_nn_fully_connected_asym8uxasym8u_asym8u( |
| 47 | + out_data, |
| 48 | + weight_data, |
| 49 | + in_data, |
| 50 | + bias_data, |
| 51 | + in_dim, // weight_depth, number of columns in weight |
| 52 | + out_dim, // out_depth, number of rows in weight |
| 53 | + -in_zero_point, |
| 54 | + -weight_zero_point.const_data_ptr<int32_t>()[0], |
| 55 | + out_multiplier.const_data_ptr<int32_t>()[0], |
| 56 | + out_shift.const_data_ptr<int32_t>()[0], |
| 57 | + out_zero_point); |
| 58 | + ET_DCHECK_MSG(ret == 0, "HiFi quantized::fully_connected failed"); |
| 59 | +} |
| 60 | + |
| 61 | +void inline _quantized_fully_connected_asym8s( |
| 62 | + const Tensor& in, |
| 63 | + const Tensor& weight, |
| 64 | + const Tensor& bias, |
| 65 | + int64_t in_zero_point, |
| 66 | + const Tensor& weight_zero_point, |
| 67 | + const Tensor& out_multiplier, |
| 68 | + const Tensor& out_shift, |
| 69 | + int64_t out_zero_point, |
| 70 | + __ET_UNUSED const optional<Tensor>& offset, |
| 71 | + Tensor& out) { |
| 72 | + // input comes in shape [leading_dims, in_dim] |
| 73 | + // weight comes in shape [out_dim, in_dim] |
| 74 | + // output comes in empty with shape [leading_dims, out_dim] |
| 75 | + // Perform matrix multiply (M x N) x (N x P)' => M x P |
| 76 | + int64_t leading_dims = 1; |
| 77 | + int64_t out_dim = weight.size(0); // = out_dim |
| 78 | + int64_t in_dim = weight.size(1); // = in_dim |
| 79 | + |
| 80 | + const int8_t* __restrict__ in_data = in.const_data_ptr<int8_t>(); |
| 81 | + const int8_t* __restrict__ weight_data = weight.const_data_ptr<int8_t>(); |
| 82 | + const int32_t* __restrict__ bias_data = bias.const_data_ptr<int32_t>(); |
| 83 | + int8_t* __restrict__ out_data = out.mutable_data_ptr<int8_t>(); |
| 84 | + |
| 85 | + int32_t ret = xa_nn_fully_connected_asym8sxasym8s_asym8s( |
| 86 | + out_data, |
| 87 | + weight_data, |
| 88 | + in_data, |
| 89 | + bias_data, |
| 90 | + in_dim, // weight_depth, number of columns in weight |
| 91 | + out_dim, // out_depth, number of rows in weight |
| 92 | + -in_zero_point, |
| 93 | + -weight_zero_point.const_data_ptr<int32_t>()[0], |
| 94 | + out_multiplier.const_data_ptr<int32_t>()[0], |
| 95 | + out_shift.const_data_ptr<int32_t>()[0], |
| 96 | + out_zero_point); |
| 97 | + ET_DCHECK_MSG(ret == 0, "HiFi quantized::fully_connected failed"); |
| 98 | +} |
| 99 | + |
| 100 | +void quantized_fully_connected_out( |
| 101 | + __ET_UNUSED KernelRuntimeContext& ctx, |
| 102 | + const Tensor& in, |
| 103 | + const Tensor& weight, |
| 104 | + const Tensor& bias, |
| 105 | + int64_t in_zero_point, |
| 106 | + const Tensor& weight_zero_point, |
| 107 | + const Tensor& out_multiplier, |
| 108 | + const Tensor& out_shift, |
| 109 | + int64_t out_zero_point, |
| 110 | + __ET_UNUSED const optional<Tensor>& offset, |
| 111 | + Tensor& out) { |
| 112 | + if (out.scalar_type() == ScalarType::Byte) { |
| 113 | + _quantized_fully_connected_asym8u( |
| 114 | + in, |
| 115 | + weight, |
| 116 | + bias, |
| 117 | + in_zero_point, |
| 118 | + weight_zero_point, |
| 119 | + out_multiplier, |
| 120 | + out_shift, |
| 121 | + out_zero_point, |
| 122 | + offset, |
| 123 | + out); |
| 124 | + } else if (out.scalar_type() == ScalarType::Char) { |
| 125 | + _quantized_fully_connected_asym8s( |
| 126 | + in, |
| 127 | + weight, |
| 128 | + bias, |
| 129 | + in_zero_point, |
| 130 | + weight_zero_point, |
| 131 | + out_multiplier, |
| 132 | + out_shift, |
| 133 | + out_zero_point, |
| 134 | + offset, |
| 135 | + out); |
| 136 | + } else { |
| 137 | + ET_CHECK_MSG( |
| 138 | + false, |
| 139 | + "quantized fully connected only supported for uint8 and int8 dtypes"); |
| 140 | + } |
| 141 | +} |
| 142 | + |
| 143 | +void inline _quantized_fully_connected_per_tensor_asym8u( |
| 144 | + const Tensor& in, |
| 145 | + const Tensor& weight, |
| 146 | + const Tensor& bias, |
| 147 | + int64_t in_zero_point, |
| 148 | + int64_t weight_zero_point, |
| 149 | + int64_t out_multiplier, |
| 150 | + int64_t out_shift, |
| 151 | + int64_t out_zero_point, |
| 152 | + __ET_UNUSED const optional<Tensor>& offset, |
| 153 | + Tensor& out) { |
| 154 | + // input comes in shape [leading_dims, in_dim] |
| 155 | + // weight comes in shape [out_dim, in_dim] |
| 156 | + // output comes in empty with shape [leading_dims, out_dim] |
| 157 | + // Perform matrix multiply (M x N) x (N x P)' => M x P |
| 158 | + int64_t leading_dims = 1; |
| 159 | + int64_t out_dim = weight.size(0); // = out_dim |
| 160 | + int64_t in_dim = weight.size(1); // = in_dim |
| 161 | + |
| 162 | + const uint8_t* __restrict__ in_data = in.const_data_ptr<uint8_t>(); |
| 163 | + const uint8_t* __restrict__ weight_data = weight.const_data_ptr<uint8_t>(); |
| 164 | + const int32_t* __restrict__ bias_data = bias.const_data_ptr<int32_t>(); |
| 165 | + uint8_t* __restrict__ out_data = out.mutable_data_ptr<uint8_t>(); |
| 166 | + |
| 167 | + int32_t ret = xa_nn_fully_connected_asym8uxasym8u_asym8u( |
| 168 | + out_data, |
| 169 | + weight_data, |
| 170 | + in_data, |
| 171 | + bias_data, |
| 172 | + in_dim, // weight_depth, number of columns in weight |
| 173 | + out_dim, // out_depth, number of rows in weight |
| 174 | + -in_zero_point, |
| 175 | + -static_cast<int32_t>(weight_zero_point), |
| 176 | + static_cast<int32_t>(out_multiplier), |
| 177 | + static_cast<int32_t>(out_shift), |
| 178 | + out_zero_point); |
| 179 | + ET_DCHECK_MSG(ret == 0, "HiFi quantized::fully_connected failed"); |
| 180 | +} |
| 181 | + |
| 182 | +void inline _quantized_fully_connected_per_tensor_asym8s( |
| 183 | + const Tensor& in, |
| 184 | + const Tensor& weight, |
| 185 | + const Tensor& bias, |
| 186 | + int64_t in_zero_point, |
| 187 | + int64_t weight_zero_point, |
| 188 | + int64_t out_multiplier, |
| 189 | + int64_t out_shift, |
| 190 | + int64_t out_zero_point, |
| 191 | + __ET_UNUSED const optional<Tensor>& offset, |
| 192 | + Tensor& out) { |
| 193 | + // input comes in shape [leading_dims, in_dim] |
| 194 | + // weight comes in shape [out_dim, in_dim] |
| 195 | + // output comes in empty with shape [leading_dims, out_dim] |
| 196 | + // Perform matrix multiply (M x N) x (N x P)' => M x P |
| 197 | + int64_t leading_dims = 1; |
| 198 | + int64_t out_dim = weight.size(0); // = out_dim |
| 199 | + int64_t in_dim = weight.size(1); // = in_dim |
| 200 | + |
| 201 | + const int8_t* __restrict__ in_data = in.const_data_ptr<int8_t>(); |
| 202 | + const int8_t* __restrict__ weight_data = weight.const_data_ptr<int8_t>(); |
| 203 | + const int32_t* __restrict__ bias_data = bias.const_data_ptr<int32_t>(); |
| 204 | + int8_t* __restrict__ out_data = out.mutable_data_ptr<int8_t>(); |
| 205 | + |
| 206 | + int32_t ret = xa_nn_fully_connected_asym8sxasym8s_asym8s( |
| 207 | + out_data, |
| 208 | + weight_data, |
| 209 | + in_data, |
| 210 | + bias_data, |
| 211 | + in_dim, // weight_depth, number of columns in weight |
| 212 | + out_dim, // out_depth, number of rows in weight |
| 213 | + -in_zero_point, |
| 214 | + -static_cast<int32_t>(weight_zero_point), |
| 215 | + static_cast<int32_t>(out_multiplier), |
| 216 | + static_cast<int32_t>(out_shift), |
| 217 | + out_zero_point); |
| 218 | + ET_DCHECK_MSG(ret == 0, "HiFi quantized::fully_connected failed"); |
| 219 | +} |
| 220 | + |
| 221 | +void quantized_fully_connected_per_tensor_out( |
| 222 | + __ET_UNUSED KernelRuntimeContext& ctx, |
| 223 | + const Tensor& in, |
| 224 | + const Tensor& weight, |
| 225 | + const Tensor& bias, |
| 226 | + int64_t in_zero_point, |
| 227 | + int64_t weight_zero_point, |
| 228 | + int64_t out_multiplier, |
| 229 | + int64_t out_shift, |
| 230 | + int64_t out_zero_point, |
| 231 | + __ET_UNUSED const optional<Tensor>& offset, |
| 232 | + Tensor& out) { |
| 233 | + if (out.scalar_type() == ScalarType::Byte) { |
| 234 | + _quantized_fully_connected_per_tensor_asym8u( |
| 235 | + in, |
| 236 | + weight, |
| 237 | + bias, |
| 238 | + in_zero_point, |
| 239 | + weight_zero_point, |
| 240 | + out_multiplier, |
| 241 | + out_shift, |
| 242 | + out_zero_point, |
| 243 | + offset, |
| 244 | + out); |
| 245 | + } else if (out.scalar_type() == ScalarType::Char) { |
| 246 | + _quantized_fully_connected_per_tensor_asym8s( |
| 247 | + in, |
| 248 | + weight, |
| 249 | + bias, |
| 250 | + in_zero_point, |
| 251 | + weight_zero_point, |
| 252 | + out_multiplier, |
| 253 | + out_shift, |
| 254 | + out_zero_point, |
| 255 | + offset, |
| 256 | + out); |
| 257 | + } else { |
| 258 | + ET_CHECK_MSG( |
| 259 | + false, |
| 260 | + "quantized fully connected only supported for uint8 and int8 dtypes"); |
| 261 | + } |
| 262 | +} |
| 263 | + |
| 264 | +} // namespace native |
| 265 | +} // namespace HiFi |
| 266 | +} // namespace impl |
| 267 | +} // namespace cadence |
0 commit comments