|
| 1 | +# Copyright (c) Qualcomm Innovation Center, Inc. |
| 2 | +# All rights reserved |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import json |
| 8 | +import os |
| 9 | +import sys |
| 10 | +from multiprocessing.connection import Client |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +import torch |
| 15 | +from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype |
| 16 | +from executorch.examples.models.wav2letter import Wav2LetterModel |
| 17 | +from executorch.examples.qualcomm.utils import ( |
| 18 | + build_executorch_binary, |
| 19 | + make_output_dir, |
| 20 | + parse_skip_delegation_node, |
| 21 | + setup_common_args_and_variables, |
| 22 | + SimpleADB, |
| 23 | +) |
| 24 | + |
| 25 | + |
| 26 | +class Conv2D(torch.nn.Module): |
| 27 | + def __init__(self, stride, padding, weight, bias=None): |
| 28 | + super().__init__() |
| 29 | + use_bias = bias is not None |
| 30 | + self.conv = torch.nn.Conv2d( |
| 31 | + in_channels=weight.shape[1], |
| 32 | + out_channels=weight.shape[0], |
| 33 | + kernel_size=[weight.shape[2], 1], |
| 34 | + stride=[*stride, 1], |
| 35 | + padding=[*padding, 0], |
| 36 | + bias=use_bias, |
| 37 | + ) |
| 38 | + self.conv.weight = torch.nn.Parameter(weight.unsqueeze(-1)) |
| 39 | + if use_bias: |
| 40 | + self.conv.bias = torch.nn.Parameter(bias) |
| 41 | + |
| 42 | + def forward(self, x): |
| 43 | + return self.conv(x) |
| 44 | + |
| 45 | + |
| 46 | +def get_dataset(data_size, artifact_dir): |
| 47 | + from torch.utils.data import DataLoader |
| 48 | + from torchaudio.datasets import LIBRISPEECH |
| 49 | + |
| 50 | + def collate_fun(batch): |
| 51 | + waves, labels = [], [] |
| 52 | + |
| 53 | + for wave, _, text, *_ in batch: |
| 54 | + waves.append(wave.squeeze(0)) |
| 55 | + labels.append(text) |
| 56 | + # need padding here for static ouput shape |
| 57 | + waves = torch.nn.utils.rnn.pad_sequence(waves, batch_first=True) |
| 58 | + return waves, labels |
| 59 | + |
| 60 | + dataset = LIBRISPEECH(artifact_dir, url="test-clean", download=True) |
| 61 | + data_loader = DataLoader( |
| 62 | + dataset=dataset, |
| 63 | + batch_size=data_size, |
| 64 | + shuffle=True, |
| 65 | + collate_fn=lambda x: collate_fun(x), |
| 66 | + ) |
| 67 | + # prepare input data |
| 68 | + inputs, targets, input_list = [], [], "" |
| 69 | + for wave, label in data_loader: |
| 70 | + for index in range(data_size): |
| 71 | + # reshape input tensor to NCHW |
| 72 | + inputs.append((wave[index].reshape(1, 1, -1, 1),)) |
| 73 | + targets.append(label[index]) |
| 74 | + input_list += f"input_{index}_0.raw\n" |
| 75 | + # here we only take first batch, i.e. 'data_size' tensors |
| 76 | + break |
| 77 | + |
| 78 | + return inputs, targets, input_list |
| 79 | + |
| 80 | + |
| 81 | +def eval_metric(pred, target_str): |
| 82 | + from torchmetrics.text import CharErrorRate, WordErrorRate |
| 83 | + |
| 84 | + def parse(ids): |
| 85 | + vocab = " abcdefghijklmnopqrstuvwxyz'*" |
| 86 | + return ["".join([vocab[c] for c in id]).replace("*", "").upper() for id in ids] |
| 87 | + |
| 88 | + pred_str = parse( |
| 89 | + [ |
| 90 | + torch.unique_consecutive(pred[i, :, :].argmax(0)) |
| 91 | + for i in range(pred.shape[0]) |
| 92 | + ] |
| 93 | + ) |
| 94 | + wer, cer = WordErrorRate(), CharErrorRate() |
| 95 | + return wer(pred_str, target_str), cer(pred_str, target_str) |
| 96 | + |
| 97 | + |
| 98 | +def main(args): |
| 99 | + skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args) |
| 100 | + |
| 101 | + # ensure the working directory exist |
| 102 | + os.makedirs(args.artifact, exist_ok=True) |
| 103 | + |
| 104 | + if not args.compile_only and args.device is None: |
| 105 | + raise RuntimeError( |
| 106 | + "device serial is required if not compile only. " |
| 107 | + "Please specify a device serial by -s/--device argument." |
| 108 | + ) |
| 109 | + |
| 110 | + instance = Wav2LetterModel() |
| 111 | + # target labels " abcdefghijklmnopqrstuvwxyz'*" |
| 112 | + instance.vocab_size = 29 |
| 113 | + model = instance.get_eager_model().eval() |
| 114 | + model.load_state_dict(torch.load(args.pretrained_weight, weights_only=True)) |
| 115 | + |
| 116 | + # convert conv1d to conv2d in nn.Module level will only introduce 2 permute |
| 117 | + # nodes around input & output, which is more quantization friendly. |
| 118 | + for i in range(len(model.acoustic_model)): |
| 119 | + for j in range(len(model.acoustic_model[i])): |
| 120 | + module = model.acoustic_model[i][j] |
| 121 | + if isinstance(module, torch.nn.Conv1d): |
| 122 | + model.acoustic_model[i][j] = Conv2D( |
| 123 | + stride=module.stride, |
| 124 | + padding=module.padding, |
| 125 | + weight=module.weight, |
| 126 | + bias=module.bias, |
| 127 | + ) |
| 128 | + |
| 129 | + # retrieve dataset, will take some time to download |
| 130 | + data_num = 100 |
| 131 | + inputs, targets, input_list = get_dataset( |
| 132 | + data_size=data_num, artifact_dir=args.artifact |
| 133 | + ) |
| 134 | + pte_filename = "w2l_qnn" |
| 135 | + build_executorch_binary( |
| 136 | + model, |
| 137 | + inputs[0], |
| 138 | + args.model, |
| 139 | + f"{args.artifact}/{pte_filename}", |
| 140 | + inputs, |
| 141 | + skip_node_id_set=skip_node_id_set, |
| 142 | + skip_node_op_set=skip_node_op_set, |
| 143 | + quant_dtype=QuantDtype.use_8a8w, |
| 144 | + shared_buffer=args.shared_buffer, |
| 145 | + ) |
| 146 | + |
| 147 | + if args.compile_only: |
| 148 | + sys.exit(0) |
| 149 | + |
| 150 | + adb = SimpleADB( |
| 151 | + qnn_sdk=os.getenv("QNN_SDK_ROOT"), |
| 152 | + build_path=f"{args.build_folder}", |
| 153 | + pte_path=f"{args.artifact}/{pte_filename}.pte", |
| 154 | + workspace=f"/data/local/tmp/executorch/{pte_filename}", |
| 155 | + device_id=args.device, |
| 156 | + host_id=args.host, |
| 157 | + soc_model=args.model, |
| 158 | + shared_buffer=args.shared_buffer, |
| 159 | + ) |
| 160 | + adb.push(inputs=inputs, input_list=input_list) |
| 161 | + adb.execute() |
| 162 | + |
| 163 | + # collect output data |
| 164 | + output_data_folder = f"{args.artifact}/outputs" |
| 165 | + make_output_dir(output_data_folder) |
| 166 | + adb.pull(output_path=args.artifact) |
| 167 | + |
| 168 | + predictions = [] |
| 169 | + for i in range(data_num): |
| 170 | + predictions.append( |
| 171 | + np.fromfile( |
| 172 | + os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32 |
| 173 | + ) |
| 174 | + ) |
| 175 | + |
| 176 | + # evaluate metrics |
| 177 | + wer, cer = 0, 0 |
| 178 | + for i, pred in enumerate(predictions): |
| 179 | + pred = torch.from_numpy(pred).reshape(1, instance.vocab_size, -1) |
| 180 | + wer_eval, cer_eval = eval_metric(pred, targets[i]) |
| 181 | + wer += wer_eval |
| 182 | + cer += cer_eval |
| 183 | + |
| 184 | + if args.ip and args.port != -1: |
| 185 | + with Client((args.ip, args.port)) as conn: |
| 186 | + conn.send( |
| 187 | + json.dumps({"wer": wer.item() / data_num, "cer": cer.item() / data_num}) |
| 188 | + ) |
| 189 | + else: |
| 190 | + print(f"wer: {wer / data_num}\ncer: {cer / data_num}") |
| 191 | + |
| 192 | + |
| 193 | +if __name__ == "__main__": |
| 194 | + parser = setup_common_args_and_variables() |
| 195 | + |
| 196 | + parser.add_argument( |
| 197 | + "-a", |
| 198 | + "--artifact", |
| 199 | + help="path for storing generated artifacts by this example. " |
| 200 | + "Default ./wav2letter", |
| 201 | + default="./wav2letter", |
| 202 | + type=str, |
| 203 | + ) |
| 204 | + |
| 205 | + parser.add_argument( |
| 206 | + "-p", |
| 207 | + "--pretrained_weight", |
| 208 | + help=( |
| 209 | + "Location of pretrained weight, please download via " |
| 210 | + "https://github.com/nipponjo/wav2letter-ctc-pytorch/tree/main?tab=readme-ov-file#wav2letter-ctc-pytorch" |
| 211 | + " for torchaudio.models.Wav2Letter version" |
| 212 | + ), |
| 213 | + default=None, |
| 214 | + type=str, |
| 215 | + required=True, |
| 216 | + ) |
| 217 | + |
| 218 | + args = parser.parse_args() |
| 219 | + try: |
| 220 | + main(args) |
| 221 | + except Exception as e: |
| 222 | + if args.ip and args.port != -1: |
| 223 | + with Client((args.ip, args.port)) as conn: |
| 224 | + conn.send(json.dumps({"Error": str(e)})) |
| 225 | + else: |
| 226 | + raise Exception(e) |
0 commit comments