|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | + |
| 8 | +import logging |
| 9 | + |
| 10 | +import torch |
| 11 | +import torchaudio |
| 12 | + |
| 13 | +from ..model_base import EagerModelBase |
| 14 | + |
| 15 | + |
| 16 | +FORMAT = "[%(filename)s:%(lineno)s] %(message)s" |
| 17 | +logging.basicConfig(format=FORMAT) |
| 18 | + |
| 19 | + |
| 20 | +__all__ = [ |
| 21 | + "EmformerRnntTranscriberModel", |
| 22 | + "EmformerRnntPredictorModel", |
| 23 | + "EmformerRnntJoinerModel", |
| 24 | +] |
| 25 | + |
| 26 | + |
| 27 | +class EmformerRnntTranscriberExample(torch.nn.Module): |
| 28 | + """ |
| 29 | + This is a wrapper for validating transcriber for the Emformer RNN-T architecture. |
| 30 | + It does not reflect the actual usage such as beam search, but rather an example for the export workflow. |
| 31 | + """ |
| 32 | + |
| 33 | + def __init__(self) -> None: |
| 34 | + super().__init__() |
| 35 | + bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH |
| 36 | + decoder = bundle.get_decoder() |
| 37 | + m = decoder.model |
| 38 | + self.rnnt = m |
| 39 | + |
| 40 | + def forward(self, transcribe_inputs): |
| 41 | + return self.rnnt.transcribe(*transcribe_inputs) |
| 42 | + |
| 43 | + |
| 44 | +class EmformerRnntTranscriberModel(EagerModelBase): |
| 45 | + def __init__(self): |
| 46 | + pass |
| 47 | + |
| 48 | + def get_eager_model(self) -> torch.nn.Module: |
| 49 | + logging.info("Loading emformer rnnt transcriber") |
| 50 | + m = EmformerRnntTranscriberExample() |
| 51 | + logging.info("Loaded emformer rnnt transcriber") |
| 52 | + return m |
| 53 | + |
| 54 | + def get_example_inputs(self): |
| 55 | + transcribe_inputs = ( |
| 56 | + torch.randn(1, 128, 80), |
| 57 | + torch.tensor([128]), |
| 58 | + ) |
| 59 | + return (transcribe_inputs,) |
| 60 | + |
| 61 | + |
| 62 | +class EmformerRnntPredictorExample(torch.nn.Module): |
| 63 | + """ |
| 64 | + This is a wrapper for validating predictor for the Emformer RNN-T architecture. |
| 65 | + It does not reflect the actual usage such as beam search, but rather an example for the export workflow. |
| 66 | + """ |
| 67 | + |
| 68 | + def __init__(self) -> None: |
| 69 | + super().__init__() |
| 70 | + bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH |
| 71 | + decoder = bundle.get_decoder() |
| 72 | + m = decoder.model |
| 73 | + self.rnnt = m |
| 74 | + |
| 75 | + def forward(self, predict_inputs): |
| 76 | + return self.rnnt.predict(*predict_inputs) |
| 77 | + |
| 78 | + |
| 79 | +class EmformerRnntPredictorModel(EagerModelBase): |
| 80 | + def __init__(self): |
| 81 | + pass |
| 82 | + |
| 83 | + def get_eager_model(self) -> torch.nn.Module: |
| 84 | + logging.info("Loading emformer rnnt predictor") |
| 85 | + m = EmformerRnntPredictorExample() |
| 86 | + logging.info("Loaded emformer rnnt predictor") |
| 87 | + return m |
| 88 | + |
| 89 | + def get_example_inputs(self): |
| 90 | + predict_inputs = ( |
| 91 | + torch.zeros([1, 128], dtype=int), |
| 92 | + torch.tensor([128], dtype=int), |
| 93 | + None, |
| 94 | + ) |
| 95 | + return (predict_inputs,) |
| 96 | + |
| 97 | + |
| 98 | +class EmformerRnntJoinerExample(torch.nn.Module): |
| 99 | + """ |
| 100 | + This is a wrapper for validating joiner for the Emformer RNN-T architecture. |
| 101 | + It does not reflect the actual usage such as beam search, but rather an example for the export workflow. |
| 102 | + """ |
| 103 | + |
| 104 | + def __init__(self) -> None: |
| 105 | + super().__init__() |
| 106 | + bundle = torchaudio.pipelines.EMFORMER_RNNT_BASE_LIBRISPEECH |
| 107 | + decoder = bundle.get_decoder() |
| 108 | + m = decoder.model |
| 109 | + self.rnnt = m |
| 110 | + |
| 111 | + def forward(self, predict_inputs): |
| 112 | + return self.rnnt.join(*predict_inputs) |
| 113 | + |
| 114 | + |
| 115 | +class EmformerRnntJoinerModel(EagerModelBase): |
| 116 | + def __init__(self): |
| 117 | + pass |
| 118 | + |
| 119 | + def get_eager_model(self) -> torch.nn.Module: |
| 120 | + logging.info("Loading emformer rnnt joiner") |
| 121 | + m = EmformerRnntJoinerExample() |
| 122 | + logging.info("Loaded emformer rnnt joiner") |
| 123 | + return m |
| 124 | + |
| 125 | + def get_example_inputs(self): |
| 126 | + join_inputs = ( |
| 127 | + torch.rand([1, 128, 1024]), |
| 128 | + torch.tensor([128]), |
| 129 | + torch.rand([1, 128, 1024]), |
| 130 | + torch.tensor([128]), |
| 131 | + ) |
| 132 | + return (join_inputs,) |
0 commit comments