14
14
15
15
#define TILE_SIZE ${TILE_SIZE}
16
16
17
+ #define BATCH_SIZE_X ${BATCH_SIZE_X}
18
+
17
19
#define BATCH_SIZE_Y ${BATCH_SIZE_Y}
18
20
19
21
#define op(X, A, B) ${OPERATOR}
20
22
21
- #include "indexing_utils_u16 .h"
23
+ #include "indexing_utils .h"
22
24
23
25
layout (std430) buffer ;
24
26
@@ -41,70 +43,79 @@ layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in;
41
43
* output at a single output location.
42
44
*/
43
45
void main() {
44
- // y divided up by batch size is used to determine 3d position
46
+ // x and y are divided by batch size to determine 3d position
45
47
// since work size is calculated by x * ((y + B_Y - 1) / B_Y) * z
46
- const int out_limits_y_scaled = (out_limits.y + BATCH_SIZE_Y - 1 ) / BATCH_SIZE_Y;
48
+ const ivec2 out_limits_xy_scaled = (out_limits.xy + ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y) - 1 ) / ivec2 (BATCH_SIZE_X, BATCH_SIZE_Y) ;
47
49
48
- u16vec3 pos = idx_to_u16pos_x_wise (gl_GlobalInvocationID.x, out_limits .x, out_limits_y_scaled );
50
+ ivec3 pos = idx_to_ipos_x_wise (gl_GlobalInvocationID.x, out_limits_xy_scaled .x, out_limits_xy_scaled.y );
49
51
50
- // scale pos.y by batch size, because that's the top pixel to be processed
51
- pos.y *= uint16_t(BATCH_SIZE_Y);
52
+ // scale pos.xy by batch sizes, because that's the top pixel to be processed
53
+ pos.x *= BATCH_SIZE_X;
54
+ pos.y *= BATCH_SIZE_Y;
52
55
53
56
// do not process if top pixel does not fit within the output range
54
- if (any (greaterThanEqual (u16vec3( pos.x, pos.y, pos.z) , out_limits))) {
57
+ if (any (greaterThanEqual (pos, out_limits))) {
55
58
return ;
56
59
}
57
60
58
61
// Compute the index of the top-left element of the overlay region. Negative
59
62
// indices indicate that the top-left element is in a region added by padding.
60
- const u16vec2 ipos = pos.xy * u16vec2( stride) - u16vec2( padding) ;
63
+ const ivec2 ipos = pos.xy * stride - padding;
61
64
62
65
// Compute the start and end of the input indices to load. Padding is assumed
63
66
// to be constant 0 padding, so any reads from the padding region is skipped.
64
- const u16vec2 start = ipos;
65
- const u16vec2 end = ipos + u16vec2( overlay_region.xy) ;
67
+ const ivec2 start = ipos;
68
+ const ivec2 end = ipos + overlay_region.xy;
66
69
67
70
// sum outputs
68
- VEC4_T sum[BATCH_SIZE_Y];
71
+ VEC4_T sum[BATCH_SIZE_Y][BATCH_SIZE_X] ;
69
72
70
- sum[0 ] = texelFetch(t_bias, u16vec2(pos.z, 0 ), 0 );
71
- for (int i = 1 ; i < BATCH_SIZE_Y; i++ ) {
72
- sum[i] = sum[0 ];
73
+ sum[0 ][0 ] = texelFetch(t_bias, ivec2 (pos.z, 0 ), 0 );
74
+ for (int y = 0 ; y < BATCH_SIZE_Y; y++ ) {
75
+ for (int x = 0 ; x < BATCH_SIZE_X; x++ ) {
76
+ sum[y][x] = sum[0 ][0 ];
77
+ }
73
78
}
74
79
75
80
// array to store input texels
76
- VEC4_T in_texels[TILE_SIZE];
81
+ VEC4_T in_texels[TILE_SIZE + BATCH_SIZE_X - 1 ];
77
82
78
83
// array to store kernel data of previous y
79
84
VEC4_T prev_kernel_line[TILE_SIZE];
80
85
81
- uint16_t kx = uint16_t( 0 ) ;
82
- for (uint16_t y = start.y, i = uint16_t( 0 ) ; i < uint16_t( TILE_SIZE + BATCH_SIZE_Y - 1 ) ; y += uint16_t( dilation.y) , i++ ) {
83
- for (uint16_t x = start.x, j = uint16_t( 0 ) ; j < uint16_t( TILE_SIZE) ; x += uint16_t( dilation.x) , j++ ) {
84
- in_texels[int (j) ] = texelFetch(t_in, u16vec3 (x, y, pos.z), 0 );
86
+ int kx = 0 ;
87
+ for (int y = start.y, i = 0 ; i < TILE_SIZE + BATCH_SIZE_Y - 1 ; y += dilation.y, i++ ) {
88
+ for (int x = start.x, j = 0 ; j < TILE_SIZE + BATCH_SIZE_X - 1 ; x += dilation.x, j++ ) {
89
+ in_texels[j ] = texelFetch(t_in, ivec3 (x, y, pos.z), 0 );
85
90
}
86
91
87
92
// from 2nd iteration onwards accumulate dot product in 2nd sum
88
93
// based on kernel line data fetched in previous iteration and input texel from this iteration
89
- if (i > uint16_t(0 )) {
90
- for (uint16_t j = uint16_t(0 ); j < uint16_t(TILE_SIZE); j++ ) {
91
- sum[1 ] = fma(in_texels[int (j)], prev_kernel_line[int (j)], sum[1 ]);
94
+ if (i > 0 ) {
95
+ for (int j = 0 ; j < TILE_SIZE; j++ ) {
96
+ for (int s = 0 ; s < BATCH_SIZE_X; s++ ) {
97
+ sum[1 ][s] = fma(in_texels[j + s], prev_kernel_line[j], sum[1 ][s]);
98
+ }
92
99
}
93
100
}
94
101
95
102
// accumulate dot product in 1st sum only until tile size
96
- if (i < uint16_t(TILE_SIZE)) {
97
- for (uint16_t j = uint16_t(0 ); j < uint16_t(TILE_SIZE); j++ , kx++ ) {
98
- prev_kernel_line[int (j)] = texelFetch(t_kernel, u16vec2(kx, pos.z), 0 );
99
- sum[0 ] = fma(in_texels[int (j)], prev_kernel_line[int (j)], sum[0 ]);
103
+ if (i < TILE_SIZE) {
104
+ for (int j = 0 ; j < TILE_SIZE; j++ , kx++ ) {
105
+ prev_kernel_line[j] = texelFetch(t_kernel, ivec2 (kx, pos.z), 0 );
106
+ for (int s = 0 ; s < BATCH_SIZE_X; s++ ) {
107
+ sum[0 ][s] = fma(in_texels[j + s], prev_kernel_line[j], sum[0 ][s]);
108
+ }
100
109
}
101
110
}
102
111
}
103
112
104
- for (int i = 0 ; i < BATCH_SIZE_Y; i++ ) {
105
- if (any (greaterThanEqual (u16vec3(pos.x, pos.y + i, pos.z), out_limits))) {
106
- continue ;
113
+ for (int y = 0 ; y < BATCH_SIZE_Y; y++ ) {
114
+ for (int x = 0 ; x < BATCH_SIZE_X; x++ ) {
115
+ if (any (greaterThanEqual (ivec3 (pos.x + x, pos.y + y, pos.z), out_limits))) {
116
+ continue ;
117
+ }
118
+ imageStore(t_out, ivec3 (pos.x + x, pos.y + y, pos.z), op(sum[y][x], out_min, out_max));
107
119
}
108
- imageStore(t_out, u16vec3(pos.x, pos.y + i, pos.z), op(sum[i], out_min, out_max));
109
120
}
110
121
}
0 commit comments