|
| 1 | +# Copyright 2024 Arm Limited and/or its affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import unittest |
| 8 | + |
| 9 | +from typing import Tuple |
| 10 | + |
| 11 | +import torch |
| 12 | +from executorch.backends.arm.test import common |
| 13 | +from executorch.backends.arm.test.test_models import TosaProfile |
| 14 | +from executorch.backends.arm.test.tester.arm_tester import ArmBackendSelector, ArmTester |
| 15 | + |
| 16 | +""" |
| 17 | +This file contain unit tests where conv are combined with other ops. |
| 18 | +""" |
| 19 | + |
| 20 | + |
| 21 | +class ComboBlockBottleneckResidual(torch.nn.Module): |
| 22 | + # This is the essence of MobileNetV2. Ref: https://arxiv.org/abs/1801.04381 |
| 23 | + edge_op_list = [ |
| 24 | + "executorch_exir_dialects_edge__ops_aten_convolution_default", |
| 25 | + "executorch_exir_dialects_edge__ops_aten__native_batch_norm_legit_no_training_default", |
| 26 | + "executorch_exir_dialects_edge__ops_aten_hardtanh_default", |
| 27 | + "executorch_exir_dialects_edge__ops_aten_add_Tensor", |
| 28 | + ] |
| 29 | + |
| 30 | + def __init__(self): |
| 31 | + super().__init__() |
| 32 | + # (t, c, n, s) = (6, 96, 1, 1) |
| 33 | + # 1. 1x1 CONV2d + ReLU6 (Pointwise) |
| 34 | + self.pointwise_conv2d = torch.nn.Conv2d( |
| 35 | + in_channels=64, out_channels=384, kernel_size=1, stride=1, groups=1 |
| 36 | + ) ## (1, 384, 81, 81) |
| 37 | + self.batch_norm2d_16 = torch.nn.BatchNorm2d(384, affine=False) |
| 38 | + self.relu6 = torch.nn.ReLU6() |
| 39 | + |
| 40 | + # 2. 3x3 DepthwiseConv2d + ReLu6 |
| 41 | + self.depthwise_conv2d = torch.nn.Conv2d( |
| 42 | + in_channels=384, |
| 43 | + out_channels=384, |
| 44 | + kernel_size=3, |
| 45 | + padding=1, |
| 46 | + stride=1, |
| 47 | + groups=384, |
| 48 | + ) ## (1, 384, H, W) |
| 49 | + |
| 50 | + # 3. Linear 1x1 Conv2d |
| 51 | + self.pointwise_conv2d_linear = torch.nn.Conv2d( |
| 52 | + in_channels=384, out_channels=64, kernel_size=1, stride=1, groups=1 |
| 53 | + ) ## (1, 64, 81, 81) |
| 54 | + |
| 55 | + def get_inputs(self) -> Tuple[torch.Tensor]: |
| 56 | + return (torch.randn(1, 64, 81, 81),) |
| 57 | + |
| 58 | + def forward(self, x): |
| 59 | + input = x |
| 60 | + # 1x1 CONV2d + ReLU6 (Pointwise) |
| 61 | + x = self.pointwise_conv2d(x) |
| 62 | + x = self.batch_norm2d_16(x) |
| 63 | + x = self.relu6(x) |
| 64 | + |
| 65 | + # 3x3 DepthwiseConv2d + ReLu6 |
| 66 | + x = self.depthwise_conv2d(x) |
| 67 | + x = self.batch_norm2d_16(x) |
| 68 | + x = self.relu6(x) |
| 69 | + |
| 70 | + # Linear 1x1 Conv2d |
| 71 | + x = self.pointwise_conv2d_linear(x) |
| 72 | + |
| 73 | + # Final Residual Connection |
| 74 | + x = x + input |
| 75 | + |
| 76 | + return x |
| 77 | + |
| 78 | + |
| 79 | +class ComboConv2dMeandim(torch.nn.Module): |
| 80 | + edge_op_list = [ |
| 81 | + "executorch_exir_dialects_edge__ops_aten_convolution_default", |
| 82 | + "executorch_exir_dialects_edge__ops_aten_mean_dim", |
| 83 | + ] |
| 84 | + |
| 85 | + def __init__(self): |
| 86 | + super().__init__() |
| 87 | + self.conv2d = torch.nn.Conv2d( |
| 88 | + in_channels=3, out_channels=10, kernel_size=5, stride=1, bias=False |
| 89 | + ) |
| 90 | + # will be specialized to aten.mean.dim |
| 91 | + self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1)) |
| 92 | + |
| 93 | + def get_inputs(self) -> Tuple[torch.Tensor]: |
| 94 | + return (torch.randn(1, 3, 128, 128),) |
| 95 | + |
| 96 | + def forward(self, x): |
| 97 | + x = self.conv2d(x) |
| 98 | + return self.adaptive_avg_pool2d(x) |
| 99 | + |
| 100 | + |
| 101 | +class ComboConvBatchnormRelu(torch.nn.Module): |
| 102 | + edge_op_list = [ |
| 103 | + "executorch_exir_dialects_edge__ops_aten_convolution_default", |
| 104 | + "executorch_exir_dialects_edge__ops_aten__native_batch_norm_legit_no_training_default", |
| 105 | + "executorch_exir_dialects_edge__ops_aten_hardtanh_default", |
| 106 | + ] |
| 107 | + |
| 108 | + def __init__(self): |
| 109 | + super().__init__() |
| 110 | + self.conv2d = torch.nn.Conv2d( |
| 111 | + in_channels=3, out_channels=3, kernel_size=3, stride=1, groups=1 |
| 112 | + ) |
| 113 | + self.batch_norm2d = torch.nn.BatchNorm2d(3, affine=False) |
| 114 | + self.relu6 = torch.nn.ReLU6() |
| 115 | + |
| 116 | + def get_inputs(self) -> Tuple[torch.Tensor]: |
| 117 | + return (torch.randn(1, 3, 256, 256),) |
| 118 | + |
| 119 | + def forward(self, x): |
| 120 | + x = self.conv2d(x) |
| 121 | + x = self.batch_norm2d(x) |
| 122 | + x = self.relu6(x) |
| 123 | + return x |
| 124 | + |
| 125 | + |
| 126 | +class TestConvCombos(unittest.TestCase): |
| 127 | + def _test_conv_combo_tosa_MI_pipeline( |
| 128 | + self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] |
| 129 | + ): |
| 130 | + tester = ( |
| 131 | + ArmTester( |
| 132 | + module, |
| 133 | + inputs=test_data, |
| 134 | + profile=TosaProfile.MI, |
| 135 | + backend=ArmBackendSelector.TOSA, |
| 136 | + permute_memory_to_nhwc=True, |
| 137 | + ) |
| 138 | + .export() |
| 139 | + .to_edge() |
| 140 | + .partition() |
| 141 | + .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) |
| 142 | + .check_not(list(module.edge_op_list)) |
| 143 | + .to_executorch() |
| 144 | + ) |
| 145 | + if common.TOSA_REF_MODEL_INSTALLED: |
| 146 | + tester.run_method().compare_outputs() |
| 147 | + else: |
| 148 | + common.logger.warning( |
| 149 | + "TOSA ref model tool not installed, skip numerical correctness tests" |
| 150 | + ) |
| 151 | + |
| 152 | + def _test_conv_combo_tosa_BI_pipeline( |
| 153 | + self, |
| 154 | + module: torch.nn.Module, |
| 155 | + test_data: Tuple[torch.Tensor], |
| 156 | + atol: float = 1e-3, |
| 157 | + rtol: float = 1e-3, |
| 158 | + ): |
| 159 | + tester = ( |
| 160 | + ArmTester( |
| 161 | + module, |
| 162 | + inputs=test_data, |
| 163 | + profile=TosaProfile.BI, |
| 164 | + backend=ArmBackendSelector.TOSA, |
| 165 | + permute_memory_to_nhwc=True, |
| 166 | + ) |
| 167 | + .quantize() |
| 168 | + .export() |
| 169 | + .to_edge() |
| 170 | + .partition() |
| 171 | + .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) |
| 172 | + .check_not(list(module.edge_op_list)) |
| 173 | + .to_executorch() |
| 174 | + ) |
| 175 | + if common.TOSA_REF_MODEL_INSTALLED: |
| 176 | + tester.run_method().compare_outputs(atol=atol, rtol=rtol, qtol=1) |
| 177 | + else: |
| 178 | + common.logger.warning( |
| 179 | + "TOSA ref model tool not installed, skip numerical correctness tests" |
| 180 | + ) |
| 181 | + |
| 182 | + def _test_conv_combo_u55_BI_pipeline( |
| 183 | + self, module: torch.nn.Module, test_data: Tuple[torch.Tensor] |
| 184 | + ): |
| 185 | + ( |
| 186 | + ArmTester( |
| 187 | + module, |
| 188 | + inputs=test_data, |
| 189 | + profile=TosaProfile.BI, |
| 190 | + backend=ArmBackendSelector.ETHOS_U55, |
| 191 | + permute_memory_to_nhwc=True, |
| 192 | + ) |
| 193 | + .quantize() |
| 194 | + .export() |
| 195 | + .to_edge() |
| 196 | + .partition() |
| 197 | + .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) |
| 198 | + .check_not(list(module.edge_op_list)) |
| 199 | + .to_executorch() |
| 200 | + ) |
| 201 | + |
| 202 | + #################### |
| 203 | + ## Conv + meandim ## |
| 204 | + #################### |
| 205 | + def test_conv_meandim_tosa_MI(self): |
| 206 | + model = ComboConv2dMeandim() |
| 207 | + self._test_conv_combo_tosa_MI_pipeline(model, model.get_inputs()) |
| 208 | + |
| 209 | + def test_conv_meandim_tosa_BI(self): |
| 210 | + model = ComboConv2dMeandim() |
| 211 | + self._test_conv_combo_tosa_BI_pipeline(model, model.get_inputs()) |
| 212 | + |
| 213 | + @unittest.skipIf( |
| 214 | + not common.VELA_INSTALLED, |
| 215 | + "There is no point in running U55 tests if the Vela tool is not installed", |
| 216 | + ) |
| 217 | + def test_conv_meandim_u55_BI(self): |
| 218 | + model = ComboConv2dMeandim() |
| 219 | + self._test_conv_combo_u55_BI_pipeline(model, model.get_inputs()) |
| 220 | + |
| 221 | + ############################## |
| 222 | + ## Conv + batch norm + relu ## |
| 223 | + ############################## |
| 224 | + def test_conv_batchnorm_relu_tosa_MI(self): |
| 225 | + model = ComboConvBatchnormRelu() |
| 226 | + self._test_conv_combo_tosa_MI_pipeline(model, model.get_inputs()) |
| 227 | + |
| 228 | + # TODO(MLETORCH-85): Investigate numerical issue. This diff is present in legacy |
| 229 | + # testcase as well (and also not tested). For now, just increase the |
| 230 | + # tolerance, such that we don't skip the test entirely (i.e. we maintain |
| 231 | + # functionality). |
| 232 | + def test_conv_batchnorm_relu_tosa_BI(self): |
| 233 | + model = ComboConvBatchnormRelu() |
| 234 | + self._test_conv_combo_tosa_BI_pipeline( |
| 235 | + model, model.get_inputs(), atol=1.0, rtol=1.0 |
| 236 | + ) |
| 237 | + |
| 238 | + @unittest.skipIf( |
| 239 | + not common.VELA_INSTALLED, |
| 240 | + "There is no point in running U55 tests if the Vela tool is not installed", |
| 241 | + ) |
| 242 | + def test_conv_batchnorm_relu_u55_BI(self): |
| 243 | + model = ComboConvBatchnormRelu() |
| 244 | + self._test_conv_combo_u55_BI_pipeline(model, model.get_inputs()) |
| 245 | + |
| 246 | + ############################### |
| 247 | + ## Block bottleneck residual ## |
| 248 | + ############################### |
| 249 | + def test_block_bottleneck_residual_tosa_MI(self): |
| 250 | + model = ComboBlockBottleneckResidual() |
| 251 | + self._test_conv_combo_tosa_MI_pipeline(model, model.get_inputs()) |
| 252 | + |
| 253 | + # TODO(MLETORCH-85): Investigate numerical issue. This diff was present in legacy |
| 254 | + # testcase as well. For now, just increase the tolerance, such that |
| 255 | + # we don't skip the test entirely (i.e. we maintain functionality). |
| 256 | + def test_block_bottleneck_residual_tosa_BI(self): |
| 257 | + model = ComboBlockBottleneckResidual() |
| 258 | + self._test_conv_combo_tosa_BI_pipeline( |
| 259 | + model, model.get_inputs(), atol=1.0, rtol=1.0 |
| 260 | + ) |
| 261 | + |
| 262 | + @unittest.skipIf( |
| 263 | + not common.VELA_INSTALLED, |
| 264 | + "There is no point in running U55 tests if the Vela tool is not installed", |
| 265 | + ) |
| 266 | + def test_block_bottleneck_residual_u55_BI(self): |
| 267 | + model = ComboBlockBottleneckResidual() |
| 268 | + self._test_conv_combo_u55_BI_pipeline(model, model.get_inputs()) |
0 commit comments