|
| 1 | +/* |
| 2 | + * Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | + * All rights reserved. |
| 4 | + * |
| 5 | + * This source code is licensed under the BSD-style license found in the |
| 6 | + * LICENSE file in the root directory of this source tree. |
| 7 | + */ |
| 8 | + |
| 9 | +#include <cstring> |
| 10 | + |
| 11 | +#include <executorch/kernels/portable/cpu/util/kernel_ops_util.h> |
| 12 | +#include <executorch/runtime/kernel/kernel_includes.h> |
| 13 | +#include <tuple> |
| 14 | + |
| 15 | +namespace torch { |
| 16 | +namespace executor { |
| 17 | +namespace native { |
| 18 | + |
| 19 | +using Tensor = exec_aten::Tensor; |
| 20 | +using ScalarType = exec_aten::ScalarType; |
| 21 | +using IntArrayRef = exec_aten::ArrayRef<int64_t>; |
| 22 | +using OptIntArrayRef = exec_aten::OptionalArrayRef<int64_t>; |
| 23 | + |
| 24 | +namespace { |
| 25 | + |
| 26 | +bool check_convolution_backward_args( |
| 27 | + const Tensor& grad_output, |
| 28 | + const Tensor& input, |
| 29 | + const Tensor& weight, |
| 30 | + ET_UNUSED const OptIntArrayRef bias_sizes_opt, |
| 31 | + IntArrayRef stride, |
| 32 | + IntArrayRef padding, |
| 33 | + IntArrayRef dilation, |
| 34 | + bool transposed, |
| 35 | + IntArrayRef output_padding, |
| 36 | + int64_t groups, |
| 37 | + ET_UNUSED exec_aten::ArrayRef<bool> output_mask, |
| 38 | + Tensor& grad_input, |
| 39 | + Tensor& grad_weight, |
| 40 | + Tensor& grad_bias) { |
| 41 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 42 | + transposed == false, "Transposed Convolution Backward not supported yet"); |
| 43 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 44 | + weight.dim() == 4, "Only 2D Convolution Backward supported for now"); |
| 45 | + |
| 46 | + ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(weight, input)); |
| 47 | + ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(grad_output, input)); |
| 48 | + ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(grad_input, input)); |
| 49 | + ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(grad_weight, input)); |
| 50 | + ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(grad_bias, input)); |
| 51 | + |
| 52 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 53 | + check_convolution_args( |
| 54 | + input, |
| 55 | + weight, |
| 56 | + exec_aten::optional<Tensor>(), |
| 57 | + stride, |
| 58 | + padding, |
| 59 | + dilation, |
| 60 | + transposed, |
| 61 | + output_padding, |
| 62 | + groups, |
| 63 | + grad_output), |
| 64 | + "Invalid convolution arguments"); |
| 65 | + |
| 66 | + size_t output_ndim = 0; |
| 67 | + exec_aten::SizesType output_sizes[kTensorDimensionLimit]; |
| 68 | + get_convolution_out_target_size( |
| 69 | + input, |
| 70 | + weight, |
| 71 | + stride, |
| 72 | + padding, |
| 73 | + dilation, |
| 74 | + transposed, |
| 75 | + output_padding, |
| 76 | + groups, |
| 77 | + output_sizes, |
| 78 | + &output_ndim); |
| 79 | + |
| 80 | + ET_LOG_AND_RETURN_IF_FALSE( |
| 81 | + output_size_is_valid({output_sizes, output_ndim}, input.dim() - 2)); |
| 82 | + |
| 83 | + ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| 84 | + grad_output.dim() == input.dim(), |
| 85 | + "grad_output should have same number of dimensions as input"); |
| 86 | + |
| 87 | + ET_LOG_AND_RETURN_IF_FALSE( |
| 88 | + tensor_has_expected_size(grad_output, {output_sizes, output_ndim})); |
| 89 | + |
| 90 | + return true; |
| 91 | +} |
| 92 | + |
| 93 | +template <typename CTYPE> |
| 94 | +void conv2d_backward_impl( |
| 95 | + const Tensor& grad_output, |
| 96 | + const Tensor& input, |
| 97 | + const Tensor& weight, |
| 98 | + IntArrayRef stride, |
| 99 | + IntArrayRef padding, |
| 100 | + IntArrayRef dilation, |
| 101 | + int64_t groups, |
| 102 | + exec_aten::ArrayRef<bool> output_mask, |
| 103 | + Tensor& grad_input, |
| 104 | + Tensor& grad_weight, |
| 105 | + Tensor& grad_bias) { |
| 106 | + auto batch_size = input.size(0); |
| 107 | + auto in_channels = input.size(1); |
| 108 | + auto out_channels = weight.size(0); |
| 109 | + auto in_height = input.size(2); |
| 110 | + auto in_width = input.size(3); |
| 111 | + auto out_height = grad_output.size(2); |
| 112 | + auto out_width = grad_output.size(3); |
| 113 | + auto kernel_height = weight.size(2); |
| 114 | + auto kernel_width = weight.size(3); |
| 115 | + |
| 116 | + const int64_t stride_h = val_at(stride, 0); |
| 117 | + const int64_t padding_h = val_at(padding, 0, /*default_value=*/0); |
| 118 | + const int64_t dilation_h = val_at(dilation, 0); |
| 119 | + const int64_t stride_w = val_at(stride, 1); |
| 120 | + const int64_t padding_w = val_at(padding, 1, /*default_value=*/0); |
| 121 | + const int64_t dilation_w = val_at(dilation, 1); |
| 122 | + |
| 123 | + auto in_channels_per_group = in_channels / groups; |
| 124 | + auto out_channels_per_group = out_channels / groups; |
| 125 | + |
| 126 | + const CTYPE* grad_output_data = grad_output.const_data_ptr<CTYPE>(); |
| 127 | + const CTYPE* input_data = input.const_data_ptr<CTYPE>(); |
| 128 | + const CTYPE* weight_data = weight.const_data_ptr<CTYPE>(); |
| 129 | + |
| 130 | + CTYPE* grad_input_data = nullptr; |
| 131 | + CTYPE* grad_weight_data = nullptr; |
| 132 | + CTYPE* grad_bias_data = nullptr; |
| 133 | + |
| 134 | + if (output_mask[0]) { |
| 135 | + grad_input_data = grad_input.mutable_data_ptr<CTYPE>(); |
| 136 | + memset(grad_input_data, 0, grad_input.nbytes()); |
| 137 | + } |
| 138 | + |
| 139 | + if (output_mask[1]) { |
| 140 | + grad_weight_data = grad_weight.mutable_data_ptr<CTYPE>(); |
| 141 | + memset(grad_weight_data, 0, grad_weight.nbytes()); |
| 142 | + } |
| 143 | + |
| 144 | + if (output_mask[2]) { |
| 145 | + grad_bias_data = grad_bias.mutable_data_ptr<CTYPE>(); |
| 146 | + memset(grad_bias_data, 0, grad_bias.nbytes()); |
| 147 | + } |
| 148 | + |
| 149 | + // @lint-ignore CLANGTIDY facebook-hte-CArray |
| 150 | + exec_aten::SizesType out_coord[kTensorDimensionLimit]; |
| 151 | + // @lint-ignore CLANGTIDY facebook-hte-CArray |
| 152 | + exec_aten::SizesType in_coord[kTensorDimensionLimit]; |
| 153 | + // @lint-ignore CLANGTIDY facebook-hte-CArray |
| 154 | + exec_aten::SizesType weight_coord[kTensorDimensionLimit]; |
| 155 | + |
| 156 | + // Compute gradients |
| 157 | + for (int64_t b = 0; b < batch_size; ++b) { // Loop over each batch |
| 158 | + in_coord[0] = b; |
| 159 | + out_coord[0] = b; |
| 160 | + for (int64_t g = 0; g < groups; ++g) { // Loop over each group |
| 161 | + for (int64_t h = 0; h < out_height; ++h) { // Loop over each output row |
| 162 | + out_coord[2] = h; |
| 163 | + for (int64_t w = 0; w < out_width; ++w) { // Loop over each output col |
| 164 | + out_coord[3] = w; |
| 165 | + |
| 166 | + // Loop over each output channel in the group |
| 167 | + for (int64_t oc = 0; oc < out_channels_per_group; ++oc) { |
| 168 | + int64_t oc_global = oc + g * out_channels_per_group; |
| 169 | + weight_coord[0] = oc_global; |
| 170 | + out_coord[1] = oc_global; |
| 171 | + |
| 172 | + int64_t out_idx = calculate_linear_index( |
| 173 | + out_coord, grad_output.strides().data(), 4); |
| 174 | + |
| 175 | + // Accumulate the gradient with respect to the bias if required |
| 176 | + if (output_mask[2]) { |
| 177 | + grad_bias_data[oc_global] += grad_output_data[out_idx]; |
| 178 | + } |
| 179 | + |
| 180 | + // Loop over each input channel in the group |
| 181 | + for (int64_t ic = 0; ic < in_channels_per_group; ++ic) { |
| 182 | + int64_t ic_global = ic + g * in_channels_per_group; |
| 183 | + in_coord[1] = ic_global; |
| 184 | + weight_coord[1] = ic; |
| 185 | + |
| 186 | + // Loop over each element |
| 187 | + for (int64_t kh = 0; kh < kernel_height; ++kh) { |
| 188 | + int64_t in_h = h * stride_h - padding_h + kh * dilation_h; |
| 189 | + if (in_h >= 0 && in_h < in_height) { |
| 190 | + in_coord[2] = in_h; |
| 191 | + weight_coord[2] = kh; |
| 192 | + |
| 193 | + for (int64_t kw = 0; kw < kernel_width; ++kw) { |
| 194 | + int64_t in_w = w * stride_w - padding_w + kw * dilation_w; |
| 195 | + if (in_w >= 0 && in_w < in_width) { |
| 196 | + in_coord[3] = in_w; |
| 197 | + weight_coord[3] = kw; |
| 198 | + |
| 199 | + int64_t in_idx = calculate_linear_index( |
| 200 | + in_coord, input.strides().data(), 4); |
| 201 | + |
| 202 | + int64_t weight_idx = calculate_linear_index( |
| 203 | + weight_coord, weight.strides().data(), 4); |
| 204 | + |
| 205 | + // Gradient with respect to the input if required |
| 206 | + if (output_mask[0]) { |
| 207 | + grad_input_data[in_idx] += |
| 208 | + grad_output_data[out_idx] * weight_data[weight_idx]; |
| 209 | + } |
| 210 | + // Gradient with respect to the weight if required |
| 211 | + if (output_mask[1]) { |
| 212 | + grad_weight_data[weight_idx] += |
| 213 | + grad_output_data[out_idx] * input_data[in_idx]; |
| 214 | + } |
| 215 | + } |
| 216 | + } |
| 217 | + } |
| 218 | + } |
| 219 | + } |
| 220 | + } |
| 221 | + } |
| 222 | + } |
| 223 | + } |
| 224 | + } |
| 225 | +} |
| 226 | + |
| 227 | +} // namespace |
| 228 | + |
| 229 | +std::tuple<Tensor&, Tensor&, Tensor&> convolution_backward_out( |
| 230 | + RuntimeContext& ctx, |
| 231 | + const Tensor& grad_output, |
| 232 | + const Tensor& input, |
| 233 | + const Tensor& weight, |
| 234 | + const OptIntArrayRef bias_sizes_opt, |
| 235 | + IntArrayRef stride, |
| 236 | + IntArrayRef padding, |
| 237 | + IntArrayRef dilation, |
| 238 | + bool transposed, |
| 239 | + IntArrayRef output_padding, |
| 240 | + int64_t groups, |
| 241 | + exec_aten::ArrayRef<bool> output_mask, |
| 242 | + Tensor& grad_input, |
| 243 | + Tensor& grad_weight, |
| 244 | + Tensor& grad_bias) { |
| 245 | + (void)ctx; |
| 246 | + |
| 247 | + std::tuple<Tensor&, Tensor&, Tensor&> ret_val( |
| 248 | + grad_input, grad_weight, grad_bias); |
| 249 | + |
| 250 | + ET_KERNEL_CHECK( |
| 251 | + ctx, |
| 252 | + check_convolution_backward_args( |
| 253 | + grad_output, |
| 254 | + input, |
| 255 | + weight, |
| 256 | + bias_sizes_opt, |
| 257 | + stride, |
| 258 | + padding, |
| 259 | + dilation, |
| 260 | + transposed, |
| 261 | + output_padding, |
| 262 | + groups, |
| 263 | + output_mask, |
| 264 | + grad_input, |
| 265 | + grad_weight, |
| 266 | + grad_bias), |
| 267 | + InvalidArgument, |
| 268 | + ret_val); |
| 269 | + |
| 270 | + ET_KERNEL_CHECK( |
| 271 | + ctx, |
| 272 | + resize_tensor(grad_input, input.sizes()) == Error::Ok, |
| 273 | + InvalidArgument, |
| 274 | + ret_val); |
| 275 | + |
| 276 | + ET_KERNEL_CHECK( |
| 277 | + ctx, |
| 278 | + resize_tensor(grad_weight, weight.sizes()) == Error::Ok, |
| 279 | + InvalidArgument, |
| 280 | + ret_val); |
| 281 | + |
| 282 | + if (bias_sizes_opt.has_value()) { |
| 283 | + ET_KERNEL_CHECK( |
| 284 | + ctx, |
| 285 | + resize_tensor(grad_bias, bias_sizes_opt.value()) == Error::Ok, |
| 286 | + InvalidArgument, |
| 287 | + ret_val); |
| 288 | + } |
| 289 | + |
| 290 | + constexpr auto name = "convolution_backward.out"; |
| 291 | + |
| 292 | + ET_SWITCH_FLOATH_TYPES(input.scalar_type(), ctx, name, CTYPE, [&]() { |
| 293 | + conv2d_backward_impl<CTYPE>( |
| 294 | + grad_output, |
| 295 | + input, |
| 296 | + weight, |
| 297 | + stride, |
| 298 | + padding, |
| 299 | + dilation, |
| 300 | + groups, |
| 301 | + output_mask, |
| 302 | + grad_input, |
| 303 | + grad_weight, |
| 304 | + grad_bias); |
| 305 | + }); |
| 306 | + |
| 307 | + return ret_val; |
| 308 | +} |
| 309 | + |
| 310 | +} // namespace native |
| 311 | +} // namespace executor |
| 312 | +} // namespace torch |
0 commit comments