|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-strict |
| 8 | + |
| 9 | +from __future__ import annotations |
| 10 | + |
| 11 | +import functools |
| 12 | +from typing import Any, Callable, Dict, Optional |
| 13 | + |
| 14 | +import torch |
| 15 | +from torch.ao.quantization.observer import MinMaxObserver, PerChannelMinMaxObserver |
| 16 | +from torch.ao.quantization.qconfig import _ObserverOrFakeQuantizeConstructor |
| 17 | +from torch.ao.quantization.quantizer import QuantizationSpec, Quantizer |
| 18 | +from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import ( |
| 19 | + _convert_scalars_to_attrs, |
| 20 | + OP_TO_ANNOTATOR, |
| 21 | + propagate_annotation, |
| 22 | + QuantizationConfig, |
| 23 | +) |
| 24 | +from torch.fx import Node |
| 25 | + |
| 26 | + |
| 27 | +__all__ = [ |
| 28 | + "VulkanQuantizer", |
| 29 | + "get_weight_quantization_config", |
| 30 | +] |
| 31 | + |
| 32 | + |
| 33 | +@functools.lru_cache |
| 34 | +def get_weight_quantization_config( |
| 35 | + is_per_channel: bool = True, |
| 36 | + weight_qmin: int = -128, |
| 37 | + weight_qmax: int = 127, |
| 38 | +) -> QuantizationConfig: |
| 39 | + |
| 40 | + weight_qscheme = ( |
| 41 | + torch.per_channel_symmetric if is_per_channel else torch.per_tensor_symmetric |
| 42 | + ) |
| 43 | + weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = ( |
| 44 | + PerChannelMinMaxObserver if is_per_channel else MinMaxObserver |
| 45 | + ) |
| 46 | + extra_args: Dict[str, Any] = {"eps": 2**-12} |
| 47 | + |
| 48 | + weight_quantization_spec = QuantizationSpec( |
| 49 | + dtype=torch.int8, |
| 50 | + quant_min=weight_qmin, |
| 51 | + quant_max=weight_qmax, |
| 52 | + qscheme=weight_qscheme, |
| 53 | + ch_axis=0, |
| 54 | + is_dynamic=False, |
| 55 | + observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args( |
| 56 | + **extra_args |
| 57 | + ), |
| 58 | + ) |
| 59 | + |
| 60 | + quantization_config = QuantizationConfig( |
| 61 | + input_activation=None, |
| 62 | + output_activation=None, |
| 63 | + weight=weight_quantization_spec, |
| 64 | + bias=None, |
| 65 | + is_qat=False, |
| 66 | + ) |
| 67 | + return quantization_config |
| 68 | + |
| 69 | + |
| 70 | +_SUPPORTED_OPS = [ |
| 71 | + "linear", |
| 72 | +] |
| 73 | + |
| 74 | + |
| 75 | +class VulkanQuantizer(Quantizer): |
| 76 | + |
| 77 | + def __init__(self) -> None: |
| 78 | + super().__init__() |
| 79 | + self.global_config: Optional[QuantizationConfig] = None |
| 80 | + |
| 81 | + def set_global(self, quantization_config: QuantizationConfig) -> VulkanQuantizer: |
| 82 | + self.global_config = quantization_config |
| 83 | + return self |
| 84 | + |
| 85 | + def transform_for_annotation( |
| 86 | + self, model: torch.fx.GraphModule |
| 87 | + ) -> torch.fx.GraphModule: |
| 88 | + """Transforms scalar values to tensor attributes""" |
| 89 | + return _convert_scalars_to_attrs(model) |
| 90 | + |
| 91 | + def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule: |
| 92 | + # currently only support static quant on Vulkan |
| 93 | + model = self._annotate_for_static_quantization_config(model) |
| 94 | + propagate_annotation(model) |
| 95 | + return model |
| 96 | + |
| 97 | + def _annotate_all_static_patterns( |
| 98 | + self, |
| 99 | + model: torch.fx.GraphModule, |
| 100 | + quantization_config: Optional[QuantizationConfig], |
| 101 | + filter_fn: Optional[Callable[[Node], bool]] = None, |
| 102 | + ) -> torch.fx.GraphModule: |
| 103 | + if quantization_config is None: |
| 104 | + return model |
| 105 | + |
| 106 | + for op in _SUPPORTED_OPS: |
| 107 | + OP_TO_ANNOTATOR[op](model, quantization_config, filter_fn) |
| 108 | + return model |
| 109 | + |
| 110 | + def _annotate_for_static_quantization_config( |
| 111 | + self, model: torch.fx.GraphModule |
| 112 | + ) -> torch.fx.GraphModule: |
| 113 | + self._annotate_all_static_patterns( |
| 114 | + model, |
| 115 | + self.global_config, |
| 116 | + ) |
| 117 | + return model |
| 118 | + |
| 119 | + def validate(self, model: torch.fx.GraphModule) -> None: |
| 120 | + pass |
0 commit comments