Skip to content

Commit d3b8584

Browse files
mcremon-metafacebook-github-bot
authored andcommitted
Update OSS repo (#2033)
Summary: Update the OSS Xtensa repo with more up to date compiler and quantizer things. Introduce a test folder and a conv1d test. Reviewed By: cccclai Differential Revision: D54034581
1 parent 20714e7 commit d3b8584

File tree

9 files changed

+653
-102
lines changed

9 files changed

+653
-102
lines changed

examples/xtensa/aot/export_example.py

Lines changed: 3 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -29,26 +29,7 @@
2929
logging.basicConfig(level=logging.INFO, format=FORMAT)
3030

3131

32-
if __name__ == "__main__":
33-
in_features = 32
34-
out_features = 16
35-
bias = True
36-
shape = [64, in_features]
37-
38-
class QuantizedLinear(torch.nn.Module):
39-
def __init__(self, in_features: int, out_features: int, bias: bool):
40-
super().__init__()
41-
self.output_linear = torch.nn.Linear(in_features, out_features, bias=bias)
42-
43-
def forward(self, x: torch.Tensor):
44-
output_linear_out = self.output_linear(x)
45-
return output_linear_out
46-
47-
model = QuantizedLinear(in_features, out_features, bias)
48-
model.eval()
49-
50-
example_inputs = (torch.ones(shape),)
51-
32+
def export_xtensa_model(model, example_inputs):
5233
# Quantizer
5334
quantizer = XtensaQuantizer()
5435

@@ -77,14 +58,14 @@ def forward(self, x: torch.Tensor):
7758
export_to_edge(
7859
converted_model_exp,
7960
example_inputs,
80-
EdgeCompileConfig(
61+
edge_compile_config=EdgeCompileConfig(
8162
_check_ir_validity=False,
8263
),
8364
)
8465
.transform(
8566
[ReplacePT2QuantWithXtensaQuant(), ReplacePT2DequantWithXtensaDequant()]
8667
)
87-
.to_executorch(config=ExecutorchBackendConfig(extract_constant_segment=False))
68+
.to_executorch(config=ExecutorchBackendConfig())
8869
)
8970

9071
logging.info(f"Final exported graph:\n{exec_prog.exported_program().graph}")

examples/xtensa/aot/meta_registrations.py

Lines changed: 49 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,10 @@
44
# This source code is licensed under the BSD-style license found in the
55
# LICENSE file in the root directory of this source tree.
66

7+
from typing import Tuple
8+
79
import torch
10+
from .utils import get_conv1d_output_size
811
from executorch.exir.scalar_type import ScalarType
912
from torch.library import impl, Library
1013

@@ -25,10 +28,17 @@
2528
)
2629

2730
lib.define(
28-
"quantized_linear_pt2(Tensor src, Tensor weight, Tensor bias, float src_scale, int src_zero_point, float weight_scale, int weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point) -> (Tensor Z)"
31+
"quantized_linear(Tensor src, Tensor weight, Tensor bias, int src_zero_point, Tensor weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point) -> (Tensor Z)"
32+
)
33+
lib.define(
34+
"quantized_linear.out(Tensor src, Tensor weight, Tensor bias, int src_zero_point, Tensor weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
35+
)
36+
37+
lib.define(
38+
"quantized_conv(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, Tensor weight_zero_point, Tensor bias_scale, float out_scale, int out_zero_point, Tensor out_multiplier, Tensor out_shift, bool channel_last=False) -> (Tensor Z)"
2939
)
3040
lib.define(
31-
"quantized_linear_pt2.out(Tensor src, Tensor weight, Tensor bias, float src_scale, int src_zero_point, float weight_scale, int weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point, *, Tensor(a!) out) -> Tensor(a!)"
41+
"quantized_conv.out(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, Tensor weight_zero_point, Tensor bias_scale, float out_scale, int out_zero_point, Tensor out_multiplier, Tensor out_shift, bool channel_last=False, *, Tensor(a!) out) -> Tensor(a!)"
3242
)
3343

3444
m = Library("xtensa", "IMPL", "Meta")
@@ -58,17 +68,15 @@ def dequantize_per_tensor_meta(
5868
return input.new_empty(input.size(), dtype=torch.float)
5969

6070

61-
@impl(m, "quantized_linear_pt2")
62-
def quantized_linear_pt2_meta(
71+
@impl(m, "quantized_linear")
72+
def quantized_linear_meta(
6373
src: torch.Tensor,
6474
weight: torch.Tensor,
6575
bias: torch.Tensor,
66-
in_scale: float,
6776
in_zero_point: int,
68-
weight_scale: float,
69-
weight_zero_point: int,
70-
out_multiplier: int,
71-
out_shift: int,
77+
weight_zero_point: torch.Tensor,
78+
out_multiplier: torch.Tensor,
79+
out_shift: torch.Tensor,
7280
out_zero_point: int,
7381
):
7482
# src comes in shape [leading_dims, in_dim]
@@ -79,3 +87,35 @@ def quantized_linear_pt2_meta(
7987
assert len(weight_size) == 2
8088
out_size[-1] = weight_size[0]
8189
return src.new_empty(out_size, dtype=torch.uint8)
90+
91+
92+
@impl(m, "quantized_conv")
93+
def quantized_conv_meta(
94+
input: torch.Tensor,
95+
weight: torch.Tensor,
96+
bias: torch.Tensor,
97+
stride: Tuple[int],
98+
padding: Tuple[int],
99+
dilation: Tuple[int],
100+
groups: int,
101+
in_zero_point: int,
102+
weight_zero_point: torch.Tensor,
103+
bias_scale: torch.Tensor,
104+
output_scale: float,
105+
output_zero_point: int,
106+
out_multiplier: torch.Tensor,
107+
out_shift: torch.Tensor,
108+
channel_last: bool = False,
109+
):
110+
out_channels, _in_channels, *kernel_size = weight.shape
111+
in_size = input.shape
112+
# Assert that the input tensor has at least 3 dimensions, and at most 6
113+
assert len(in_size) > 2
114+
assert len(in_size) < 6
115+
116+
# Compute the output tensor size
117+
output_size = get_conv1d_output_size(
118+
in_size, out_channels, stride[0], padding[0], dilation[0], kernel_size[0]
119+
)
120+
121+
return input.new_empty(output_size, dtype=input.dtype)

0 commit comments

Comments
 (0)