|
| 1 | +# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. |
| 2 | + |
| 3 | +# pyre-strict |
| 4 | + |
| 5 | +from dataclasses import dataclass |
| 6 | +from typing import Callable, Optional, Set, Union |
| 7 | + |
| 8 | +import torch |
| 9 | +from executorch.backends.cadence.aot.utils import get_edge_overload_packet |
| 10 | + |
| 11 | +from executorch.exir.dialects.edge._ops import EdgeOpOverload, EdgeOpOverloadPacket |
| 12 | + |
| 13 | +from executorch.exir.pass_base import ExportPass |
| 14 | +from torch._ops import OpOverloadPacket |
| 15 | + |
| 16 | + |
| 17 | +# Is an overlap in tensor lifetime and storage allowed at the current opt level? |
| 18 | +# We allow overlap at opt level >= 2. |
| 19 | +def allow_lifetime_and_storage_overlap(opt_level: int) -> bool: |
| 20 | + return opt_level >= 2 |
| 21 | + |
| 22 | + |
| 23 | +# A dataclass that stores the attributes of an ExportPass. |
| 24 | +@dataclass |
| 25 | +class CadencePassAttribute: |
| 26 | + opt_level: Optional[int] = None |
| 27 | + debug_pass: bool = False |
| 28 | + |
| 29 | + |
| 30 | +# A dictionary that maps an ExportPass to its attributes. |
| 31 | +_ALL_CADENCE_PASSES: dict[ExportPass, CadencePassAttribute] = {} |
| 32 | + |
| 33 | + |
| 34 | +def get_cadence_pass_attribute(p: ExportPass) -> CadencePassAttribute: |
| 35 | + return _ALL_CADENCE_PASSES[p] |
| 36 | + |
| 37 | + |
| 38 | +# A decorator that registers a pass. |
| 39 | +def register_cadence_pass( |
| 40 | + pass_attribute: CadencePassAttribute, |
| 41 | +) -> Callable[[ExportPass], ExportPass]: |
| 42 | + def wrapper(cls: ExportPass) -> ExportPass: |
| 43 | + _ALL_CADENCE_PASSES[cls] = pass_attribute |
| 44 | + return cls |
| 45 | + |
| 46 | + return wrapper |
| 47 | + |
| 48 | + |
| 49 | +def get_all_available_cadence_passes() -> Set[ExportPass]: |
| 50 | + return set(_ALL_CADENCE_PASSES.keys()) |
| 51 | + |
| 52 | + |
| 53 | +# Create a new filter to filter out relevant passes from all Jarvis passes. |
| 54 | +def create_cadence_pass_filter( |
| 55 | + opt_level: int, debug: bool = False |
| 56 | +) -> Callable[[ExportPass], bool]: |
| 57 | + def _filter(p: ExportPass) -> bool: |
| 58 | + pass_attribute = get_cadence_pass_attribute(p) |
| 59 | + return ( |
| 60 | + pass_attribute.opt_level is not None |
| 61 | + and pass_attribute.opt_level <= opt_level |
| 62 | + and (not pass_attribute.debug_pass or debug) |
| 63 | + ) |
| 64 | + |
| 65 | + return _filter |
| 66 | + |
| 67 | + |
| 68 | +# Return the overload packet for the edge or torch op. |
| 69 | +def get_overload_packet( |
| 70 | + op: Union[Callable[..., str], str], |
| 71 | +) -> Union[OpOverloadPacket, EdgeOpOverloadPacket, None]: |
| 72 | + return ( |
| 73 | + get_edge_overload_packet(op) |
| 74 | + if isinstance(op, EdgeOpOverload) |
| 75 | + else getattr(op, "overloadpacket", None) |
| 76 | + ) |
| 77 | + |
| 78 | + |
| 79 | +# Get the list of node names in a graph module (only for "call_function" ops and |
| 80 | +# EdgeOpOverload targets). This should be used only after to_edge is called. |
| 81 | +def get_node_names_list_from_gm( |
| 82 | + graph_module: torch.fx.GraphModule, |
| 83 | +) -> list[torch.fx.Node]: |
| 84 | + graph_nodes = [] |
| 85 | + for node in graph_module.graph.nodes: |
| 86 | + if node.op != "call_function": |
| 87 | + continue |
| 88 | + if not isinstance(node.target, EdgeOpOverload): |
| 89 | + continue |
| 90 | + graph_nodes.append(node.name) |
| 91 | + return graph_nodes |
0 commit comments