|
| 1 | +# Copyright (c) Qualcomm Innovation Center, Inc. |
| 2 | +# All rights reserved |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import json |
| 8 | +import os |
| 9 | +import sys |
| 10 | +from multiprocessing.connection import Client |
| 11 | + |
| 12 | +import numpy as np |
| 13 | + |
| 14 | +import torch |
| 15 | +from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype |
| 16 | +from executorch.examples.qualcomm.scripts.utils import ( |
| 17 | + build_executorch_binary, |
| 18 | + make_output_dir, |
| 19 | + parse_skip_delegation_node, |
| 20 | + setup_common_args_and_variables, |
| 21 | + SimpleADB, |
| 22 | + topk_accuracy, |
| 23 | +) |
| 24 | + |
| 25 | + |
| 26 | +def get_dataset(dataset_path, data_size): |
| 27 | + from torchvision import datasets, transforms |
| 28 | + |
| 29 | + def get_data_loader(): |
| 30 | + preprocess = transforms.Compose( |
| 31 | + [ |
| 32 | + transforms.Resize(256), |
| 33 | + transforms.CenterCrop(224), |
| 34 | + transforms.ToTensor(), |
| 35 | + transforms.Normalize( |
| 36 | + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
| 37 | + ), |
| 38 | + ] |
| 39 | + ) |
| 40 | + imagenet_data = datasets.ImageFolder(dataset_path, transform=preprocess) |
| 41 | + return torch.utils.data.DataLoader( |
| 42 | + imagenet_data, |
| 43 | + shuffle=True, |
| 44 | + ) |
| 45 | + |
| 46 | + # prepare input data |
| 47 | + inputs, targets, input_list = [], [], "" |
| 48 | + data_loader = get_data_loader() |
| 49 | + for index, data in enumerate(data_loader): |
| 50 | + if index >= data_size: |
| 51 | + break |
| 52 | + feature, target = data |
| 53 | + inputs.append((feature,)) |
| 54 | + targets.append(target) |
| 55 | + input_list += f"input_{index}_0.raw\n" |
| 56 | + |
| 57 | + return inputs, targets, input_list |
| 58 | + |
| 59 | + |
| 60 | +if __name__ == "__main__": |
| 61 | + parser = setup_common_args_and_variables() |
| 62 | + |
| 63 | + parser.add_argument( |
| 64 | + "-d", |
| 65 | + "--dataset", |
| 66 | + help=( |
| 67 | + "path to the validation folder of ImageNet dataset. " |
| 68 | + "e.g. --dataset imagenet-mini/val " |
| 69 | + "for https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000)" |
| 70 | + ), |
| 71 | + type=str, |
| 72 | + required=True, |
| 73 | + ) |
| 74 | + |
| 75 | + parser.add_argument( |
| 76 | + "-a", |
| 77 | + "--artifact", |
| 78 | + help="path for storing generated artifacts by this example. " |
| 79 | + "Default ./squeezenet", |
| 80 | + default="./squeezenet", |
| 81 | + type=str, |
| 82 | + ) |
| 83 | + |
| 84 | + args = parser.parse_args() |
| 85 | + |
| 86 | + skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args) |
| 87 | + |
| 88 | + # ensure the working directory exist. |
| 89 | + os.makedirs(args.artifact, exist_ok=True) |
| 90 | + |
| 91 | + if not args.compile_only and args.device is None: |
| 92 | + raise RuntimeError( |
| 93 | + "device serial is required if not compile only. " |
| 94 | + "Please specify a device serial by -s/--device argument." |
| 95 | + ) |
| 96 | + |
| 97 | + data_num = 100 |
| 98 | + inputs, targets, input_list = get_dataset( |
| 99 | + dataset_path=f"{args.dataset}", |
| 100 | + data_size=data_num, |
| 101 | + ) |
| 102 | + pte_filename = "squeezenet_qnn" |
| 103 | + instance = torch.hub.load( |
| 104 | + "pytorch/vision:v0.10.0", "squeezenet1_1", pretrained=True |
| 105 | + ) |
| 106 | + build_executorch_binary( |
| 107 | + instance.eval(), |
| 108 | + (torch.randn(1, 3, 224, 224),), |
| 109 | + args.model, |
| 110 | + f"{args.artifact}/{pte_filename}", |
| 111 | + inputs, |
| 112 | + skip_node_id_set=skip_node_id_set, |
| 113 | + skip_node_op_set=skip_node_op_set, |
| 114 | + quant_dtype=QuantDtype.use_16a16w, |
| 115 | + ) |
| 116 | + |
| 117 | + if args.compile_only: |
| 118 | + sys.exit(0) |
| 119 | + |
| 120 | + # setup required paths accordingly |
| 121 | + # qnn_sdk : QNN SDK path setup in environment variable |
| 122 | + # artifact_path : path where artifacts were built |
| 123 | + # pte_path : path where executorch binary was stored |
| 124 | + # device_id : serial number of android device |
| 125 | + # workspace : folder for storing artifacts on android device |
| 126 | + adb = SimpleADB( |
| 127 | + qnn_sdk=os.getenv("QNN_SDK_ROOT"), |
| 128 | + artifact_path=f"{args.build_folder}", |
| 129 | + pte_path=f"{args.artifact}/{pte_filename}.pte", |
| 130 | + workspace=f"/data/local/tmp/executorch/{pte_filename}", |
| 131 | + device_id=args.device, |
| 132 | + host_id=args.host, |
| 133 | + soc_model=args.model, |
| 134 | + ) |
| 135 | + adb.push(inputs=inputs, input_list=input_list) |
| 136 | + adb.execute() |
| 137 | + |
| 138 | + # collect output data |
| 139 | + output_data_folder = f"{args.artifact}/outputs" |
| 140 | + make_output_dir(output_data_folder) |
| 141 | + |
| 142 | + adb.pull(output_path=args.artifact) |
| 143 | + |
| 144 | + # top-k analysis |
| 145 | + predictions = [] |
| 146 | + for i in range(data_num): |
| 147 | + predictions.append( |
| 148 | + np.fromfile( |
| 149 | + os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32 |
| 150 | + ) |
| 151 | + ) |
| 152 | + |
| 153 | + k_val = [1, 5] |
| 154 | + topk = [topk_accuracy(predictions, targets, k).item() for k in k_val] |
| 155 | + if args.ip and args.port != -1: |
| 156 | + with Client((args.ip, args.port)) as conn: |
| 157 | + conn.send(json.dumps({f"top_{k}": topk[i] for i, k in enumerate(k_val)})) |
| 158 | + else: |
| 159 | + for i, k in enumerate(k_val): |
| 160 | + print(f"top_{k}->{topk[i]}%") |
0 commit comments