|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +from typing import Optional |
| 8 | + |
| 9 | +import torch |
| 10 | +from torch.library import impl, impl_abstract |
| 11 | + |
| 12 | +torchat_lib = torch.library.Library( |
| 13 | + "torchat", "DEF" |
| 14 | +) |
| 15 | + |
| 16 | +torchat_lib.define( |
| 17 | + "embedding_int8(Tensor input, Tensor weight, " |
| 18 | + "Tensor scales) -> Tensor", |
| 19 | +) |
| 20 | + |
| 21 | +@impl(torchat_lib, "embedding_int8", "CompositeExplicitAutograd") |
| 22 | +def embedding_int8( |
| 23 | + input: torch.Tensor, |
| 24 | + weight: torch.Tensor, |
| 25 | + scales: torch.Tensor, |
| 26 | +) -> torch.Tensor: |
| 27 | + indices = input |
| 28 | + # embedding_byte_weight_checks(weight, weight_scales, weight_zero_points) |
| 29 | + group_size = weight.size(1) // ( |
| 30 | + weight_scales.size(1) if weight_scales.dim() == 2 else 1 |
| 31 | + ) |
| 32 | + # ET definition |
| 33 | + if False: |
| 34 | + weight_zero_points = None |
| 35 | + weight = torch.ops.quantized_decomposed.dequantize_per_channel_group.default( |
| 36 | + weight, |
| 37 | + weight_scales, |
| 38 | + weight_zero_points, |
| 39 | + weight_quant_min, |
| 40 | + weight_quant_max, |
| 41 | + weight.dtype, |
| 42 | + group_size, |
| 43 | + weight_scales.dtype, |
| 44 | + ) |
| 45 | + return torch.ops.aten.embedding.default(weight, indices) |
| 46 | + |
| 47 | + scales = scales.view(weight.shape[0], -1) |
| 48 | + result_weights = F.embedding(indices, weight) |
| 49 | + result_scales = F.embedding(indices, scales) |
| 50 | + |
| 51 | + rw_view = result_weights.to(dtype=result_scales.dtype).view(tuple(result_weights.shape[:-1] + (scales.shape[1], -1, ))) |
| 52 | + rs_view = result_scales.view(tuple(result_scales.shape[:-1]) + (scales.shape[1], 1, )) |
| 53 | + # print(f"rw_view {rw_view.shape}") |
| 54 | + # print(f"rs_view {rs_view.shape}") |
| 55 | + |
| 56 | + r = rw_view * rs_view |
| 57 | + return r.view(indices.size() + (-1,)) |
| 58 | + |
| 59 | + |
| 60 | +torchat_lib.define( |
| 61 | + "linear_int8(Tensor input, Tensor weight, Tensor scales, " |
| 62 | + "Tensor bias = None) -> Tensor", |
| 63 | +) |
| 64 | + |
| 65 | +@impl(torchat_lib, "linear_int8", "CompositeExplicitAutograd") |
| 66 | +def linear_int8( |
| 67 | + input: torch.Tensor, |
| 68 | + weight: torch.Tensor, |
| 69 | + scales: torch.Tensor, |
| 70 | + bias: Optional[torch.Tensor] = None, |
| 71 | +) -> Tensor: |
| 72 | + assert bias is None, "bias != None not implemented" |
| 73 | + |
| 74 | + scales = scales.view(scales.shape[0], -1) |
| 75 | + no_groups = scales.shape[1] |
| 76 | + |
| 77 | + # for now, we special-case channel-wise, because we know how to |
| 78 | + # make that fast with Triton |
| 79 | + if scales.shape[1] == 1: |
| 80 | + return F.linear(input, weight.to(dtype=input.dtype)) * self.scales |
| 81 | + else: |
| 82 | + return F.linear( |
| 83 | + input, |
| 84 | + (weight.to(dtype=input.dtype).view(weight.shape[0],no_groups, -1) |
| 85 | + * scales.view(weight.shape[0], no_groups, -1) |
| 86 | + ).view(weight.shape[0], -1) |
| 87 | + ) |
| 88 | + |
| 89 | + |
| 90 | + |
| 91 | +torchat_lib.define( |
| 92 | + "linear_int4(Tensor input, Tensor weight, Tensor scales_and_zeros, " |
| 93 | + "Tensor bias = None, int groupsize, int origin_in_features, " |
| 94 | + "int int_features, int out_features, bool padding = True) -> Tensor", |
| 95 | +) |
| 96 | + |
| 97 | +@impl(torchat_lib, "linear_int4", "CompositeExplicitAutograd") |
| 98 | +def linear_int4( |
| 99 | + input: torch.Tensor, |
| 100 | + weight: torch.Tensor, |
| 101 | + scales_and_zeros: torch.Tensor, |
| 102 | + bias: torch.Tensor = None, |
| 103 | + *, |
| 104 | + groupsize: int, |
| 105 | + origin_in_features: int, |
| 106 | + in_features: int, |
| 107 | + out_features: int, |
| 108 | + padding: bool = True, |
| 109 | +) -> Tensor: |
| 110 | + assert bias is None, "bias != None not implemented" |
| 111 | + |
| 112 | + if padding: |
| 113 | + import torch.nn.functional as F |
| 114 | + input = F.pad(input, pad=(0, in_features - origin_in_features)) |
| 115 | + |
| 116 | + # the weight is in int4pack format |
| 117 | + # rename to remind ourselves of that |
| 118 | + weight_int4pack = weight |
| 119 | + |
| 120 | + origin_input_size = input.size() |
| 121 | + input = input.reshape(-1, origin_input_size[-1]) |
| 122 | + c = torch.ops.aten._weight_int4pack_mm( |
| 123 | + input.to(dtype=torch.bfloat16), |
| 124 | + weight_int4pack, |
| 125 | + groupsize, |
| 126 | + scales_and_zeros.to(dtype=torch.bfloat16) |
| 127 | + ).to(dtype=input.dtype) |
| 128 | + new_shape = origin_input_size[:-1] + (out_features,) |
| 129 | + c = c.reshape(new_shape) |
| 130 | + return c |
| 131 | + |
0 commit comments