Skip to content

Commit da2019d

Browse files
committed
Generate Python docs from pytorch/pytorch@6c8c5ad
1 parent 9a6c542 commit da2019d

File tree

88 files changed

+2960
-259
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

88 files changed

+2960
-259
lines changed

docs/2.2/_images/RReLU.png

-82 Bytes
Loading

docs/2.2/_modules/torch.html

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1126,7 +1126,13 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
11261126

11271127

11281128
<div class="viewcode-block" id="set_default_tensor_type"><a class="viewcode-back" href="../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type">[docs]</a><span class="k">def</span> <span class="nf">set_default_tensor_type</span><span class="p">(</span><span class="n">t</span><span class="p">):</span>
1129-
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Sets the default ``torch.Tensor`` type to floating point tensor type</span>
1129+
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
1130+
<span class="sd"> .. warning::</span>
1131+
1132+
<span class="sd"> This function is deprecated as of PyTorch 2.1, please use :func:`torch.set_default_dtype()` and</span>
1133+
<span class="sd"> :func:`torch.set_default_device()` as alternatives.</span>
1134+
1135+
<span class="sd"> Sets the default ``torch.Tensor`` type to floating point tensor type</span>
11301136
<span class="sd"> ``t``. This type will also be used as default floating point type for</span>
11311137
<span class="sd"> type inference in :func:`torch.tensor`.</span>
11321138

docs/2.2/_modules/torch/distributed/checkpoint/state_dict.html

Lines changed: 20 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -621,7 +621,7 @@ <h1>Source code for torch.distributed.checkpoint.state_dict</h1><div class="high
621621
<span class="k">if</span> <span class="ow">not</span> <span class="n">skip_ddp_prefix</span><span class="p">:</span>
622622
<span class="n">fqn_obj_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">curr_obj_name</span><span class="p">)</span>
623623
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">curr_obj</span><span class="p">,</span> <span class="n">FSDP</span><span class="p">):</span>
624-
<span class="k">if</span> <span class="n">obj_names</span><span class="p">[</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="n">FLAT_PARAM</span><span class="p">:</span>
624+
<span class="k">if</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="nb">len</span><span class="p">(</span><span class="n">obj_names</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span> <span class="ow">and</span> <span class="n">obj_names</span><span class="p">[</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="n">FLAT_PARAM</span><span class="p">:</span>
625625
<span class="n">prefix</span> <span class="o">=</span> <span class="s2">&quot;.&quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">fqn_obj_names</span><span class="p">)</span>
626626
<span class="n">flat_param</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">curr_obj</span><span class="p">,</span> <span class="n">FLAT_PARAM</span><span class="p">)</span>
627627
<span class="k">if</span> <span class="n">prefix</span><span class="p">:</span>
@@ -660,7 +660,7 @@ <h1>Source code for torch.distributed.checkpoint.state_dict</h1><div class="high
660660
<span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">Union</span><span class="p">[</span><span class="n">Set</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span>
661661
<span class="p">]</span> <span class="o">=</span> <span class="p">{}</span>
662662
<span class="n">all_fqns</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
663-
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">():</span>
663+
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">chain</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">(),</span> <span class="n">model</span><span class="o">.</span><span class="n">named_buffers</span><span class="p">()):</span>
664664
<span class="n">fqns</span> <span class="o">=</span> <span class="n">_get_fqns</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span>
665665
<span class="n">fqn_param_mapping</span><span class="p">[</span><span class="n">param</span><span class="p">]</span> <span class="o">=</span> <span class="n">fqns</span>
666666
<span class="k">for</span> <span class="n">fqn</span> <span class="ow">in</span> <span class="n">fqns</span><span class="p">:</span>
@@ -859,7 +859,7 @@ <h1>Source code for torch.distributed.checkpoint.state_dict</h1><div class="high
859859
<span class="k">if</span> <span class="ow">not</span> <span class="n">info</span><span class="o">.</span><span class="n">handle_model</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">state_dict</span><span class="p">:</span>
860860
<span class="k">return</span> <span class="n">_IncompatibleKeys</span><span class="p">({},</span> <span class="p">{})</span>
861861

862-
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">():</span>
862+
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">chain</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">(),</span> <span class="n">model</span><span class="o">.</span><span class="n">named_buffers</span><span class="p">()):</span>
863863
<span class="n">fqns</span> <span class="o">=</span> <span class="n">_get_fqns</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span>
864864
<span class="n">fqns_with_ddp_prefix</span> <span class="o">=</span> <span class="n">_get_fqns</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">skip_ddp_prefix</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
865865
<span class="k">for</span> <span class="n">fqn</span><span class="p">,</span> <span class="n">fqn_with_ddp_prefix</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">fqns</span><span class="p">,</span> <span class="n">fqns_with_ddp_prefix</span><span class="p">):</span>
@@ -1142,25 +1142,25 @@ <h1>Source code for torch.distributed.checkpoint.state_dict</h1><div class="high
11421142
<span class="sd"> optimizer parameter IDs to the canonical FQNs.</span>
11431143

11441144
<span class="sd"> Example:</span>
1145+
<span class="sd"> &gt;&gt;&gt; # xdoctest: +SKIP</span>
1146+
<span class="sd"> &gt;&gt;&gt; import torch</span>
1147+
<span class="sd"> &gt;&gt;&gt; from torch.distributed.fsdp import FullyShardedDataParallel as FSDP</span>
1148+
<span class="sd"> &gt;&gt;&gt; from torch.nn.parallel import DistributedDataParallel as DDP</span>
1149+
<span class="sd"> &gt;&gt;&gt; from torch.distributed.checkpoint.state_dict import get_state_dict</span>
11451150

1146-
<span class="sd"> import torch</span>
1147-
<span class="sd"> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP</span>
1148-
<span class="sd"> from torch.nn.parallel import DistributedDataParallel as DDP</span>
1149-
<span class="sd"> from torch.distributed.checkpoint.state_dict import get_state_dict</span>
1150-
1151-
<span class="sd"> fsdp_model = FSDP(copy.deepcopy(model))</span>
1152-
<span class="sd"> fsdp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)</span>
1153-
<span class="sd"> ddp_model = DDP(copy.deepcopy(model))</span>
1154-
<span class="sd"> ddp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)</span>
1151+
<span class="sd"> &gt;&gt;&gt; fsdp_model = FSDP(copy.deepcopy(model))</span>
1152+
<span class="sd"> &gt;&gt;&gt; fsdp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)</span>
1153+
<span class="sd"> &gt;&gt;&gt; ddp_model = DDP(copy.deepcopy(model))</span>
1154+
<span class="sd"> &gt;&gt;&gt; ddp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)</span>
11551155

11561156

1157-
<span class="sd"> ddp_state_dict, ddp_optim_state_dict = get_state_dict(ddp_model, ddp_optim)</span>
1158-
<span class="sd"> fsdp_state_dict, fsdp_optim_state_dict = get_state_dict(fsdp_model, fsdp_optim)</span>
1157+
<span class="sd"> &gt;&gt;&gt; ddp_state_dict, ddp_optim_state_dict = get_state_dict(ddp_model, ddp_optim)</span>
1158+
<span class="sd"> &gt;&gt;&gt; fsdp_state_dict, fsdp_optim_state_dict = get_state_dict(fsdp_model, fsdp_optim)</span>
11591159

1160-
<span class="sd"> # if we simply call ddp_model.state_dict() and fsdp_model.state_dict(),</span>
1161-
<span class="sd"> # the asserts will fail.</span>
1162-
<span class="sd"> assert ddp_state_dict == fsdp_state_dict</span>
1163-
<span class="sd"> assert ddp_optim_state == fsdp_optim_state_dict</span>
1160+
<span class="sd"> &gt;&gt;&gt; # if we simply call ddp_model.state_dict() and fsdp_model.state_dict(),</span>
1161+
<span class="sd"> &gt;&gt;&gt; # the asserts will fail.</span>
1162+
<span class="sd"> &gt;&gt;&gt; assert ddp_state_dict == fsdp_state_dict</span>
1163+
<span class="sd"> &gt;&gt;&gt; assert ddp_optim_state == fsdp_optim_state_dict</span>
11641164

11651165

11661166
<span class="sd"> Args:</span>
@@ -1175,6 +1175,8 @@ <h1>Source code for torch.distributed.checkpoint.state_dict</h1><div class="high
11751175

11761176
<span class="sd"> Returns:</span>
11771177
<span class="sd"> ``Tuple`` that contain model state_dict and optimizer state_dict.</span>
1178+
1179+
<span class="sd"> :rtype: typing.Tuple[typing.Dict[str, ValueType], OptimizerStateType]</span>
11781180
<span class="sd"> &quot;&quot;&quot;</span>
11791181

11801182
<span class="k">with</span> <span class="n">gc_context</span><span class="p">():</span>

docs/2.2/_modules/torch/distributed/fsdp/fully_sharded_data_parallel.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -932,7 +932,7 @@ <h1>Source code for torch.distributed.fsdp.fully_sharded_data_parallel</h1><div
932932
<span class="s2">&quot;ignored_states&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">_ignored_params</span><span class="p">,</span>
933933
<span class="s2">&quot;device_mesh&quot;</span><span class="p">:</span> <span class="n">device_mesh</span><span class="p">,</span>
934934
<span class="p">}</span>
935-
<span class="k">if</span> <span class="n">sharding_strategy</span> <span class="ow">in</span> <span class="n">HYBRID_SHARDING_STRATEGIES</span><span class="p">:</span>
935+
<span class="k">if</span> <span class="n">sharding_strategy</span> <span class="ow">in</span> <span class="n">HYBRID_SHARDING_STRATEGIES</span> <span class="ow">and</span> <span class="n">device_mesh</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
936936
<span class="c1"># Share root process groups with children to maintain</span>
937937
<span class="c1"># the invariant that all FSDP modules will have the same</span>
938938
<span class="c1"># process groups.</span>

docs/2.2/_modules/torch/distributed/tensor/parallel/style.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -495,7 +495,7 @@ <h1>Source code for torch.distributed.tensor.parallel.style</h1><div class="high
495495

496496
<div class="viewcode-block" id="ColwiseParallel"><a class="viewcode-back" href="../../../../../distributed.tensor.parallel.html#torch.distributed.tensor.parallel.ColwiseParallel">[docs]</a><span class="k">class</span> <span class="nc">ColwiseParallel</span><span class="p">(</span><span class="n">ParallelStyle</span><span class="p">):</span>
497497
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
498-
<span class="sd"> Partition a compatible nn.Module in a row-wise fashion. Currently supports nn.Linear and nn.Embedding.</span>
498+
<span class="sd"> Partition a compatible nn.Module in a column-wise fashion. Currently supports nn.Linear and nn.Embedding.</span>
499499
<span class="sd"> Users can compose it together with RowwiseParallel to achieve the sharding of more complicated modules.</span>
500500
<span class="sd"> (i.e. MLP, Attention)</span>
501501

docs/2.2/_modules/torch/nn/modules/padding.html

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -491,7 +491,7 @@ <h1>Source code for torch.nn.modules.padding</h1><div class="highlight"><pre>
491491
<span class="k">return</span> <span class="sa">f</span><span class="s1">&#39;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">padding</span><span class="si">}</span><span class="s1">&#39;</span>
492492

493493

494-
<span class="k">class</span> <span class="nc">CircularPad1d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
494+
<div class="viewcode-block" id="CircularPad1d"><a class="viewcode-back" href="../../../../generated/torch.nn.CircularPad1d.html#torch.nn.CircularPad1d">[docs]</a><span class="k">class</span> <span class="nc">CircularPad1d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
495495
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Pads the input tensor using circular padding of the input boundary.</span>
496496

497497
<span class="sd"> Tensor values at the beginning of the dimension are used to pad the end,</span>
@@ -539,10 +539,10 @@ <h1>Source code for torch.nn.modules.padding</h1><div class="highlight"><pre>
539539
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">2</span> <span class="ow">and</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">3</span><span class="p">:</span>
540540
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
541541
<span class="sa">f</span><span class="s2">&quot;expected 2D or 3D input (got </span><span class="si">{</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span><span class="si">}</span><span class="s2">D input)&quot;</span>
542-
<span class="p">)</span>
542+
<span class="p">)</span></div>
543543

544544

545-
<span class="k">class</span> <span class="nc">CircularPad2d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
545+
<div class="viewcode-block" id="CircularPad2d"><a class="viewcode-back" href="../../../../generated/torch.nn.CircularPad2d.html#torch.nn.CircularPad2d">[docs]</a><span class="k">class</span> <span class="nc">CircularPad2d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
546546
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Pads the input tensor using circular padding of the input boundary.</span>
547547

548548
<span class="sd"> Tensor values at the beginning of the dimension are used to pad the end,</span>
@@ -600,10 +600,10 @@ <h1>Source code for torch.nn.modules.padding</h1><div class="highlight"><pre>
600600
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">3</span> <span class="ow">and</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">4</span><span class="p">:</span>
601601
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
602602
<span class="sa">f</span><span class="s2">&quot;expected 3D or 4D input (got </span><span class="si">{</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span><span class="si">}</span><span class="s2">D input)&quot;</span>
603-
<span class="p">)</span>
603+
<span class="p">)</span></div>
604604

605605

606-
<span class="k">class</span> <span class="nc">CircularPad3d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
606+
<div class="viewcode-block" id="CircularPad3d"><a class="viewcode-back" href="../../../../generated/torch.nn.CircularPad3d.html#torch.nn.CircularPad3d">[docs]</a><span class="k">class</span> <span class="nc">CircularPad3d</span><span class="p">(</span><span class="n">_CircularPadNd</span><span class="p">):</span>
607607
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Pads the input tensor using circular padding of the input boundary.</span>
608608

609609
<span class="sd"> Tensor values at the beginning of the dimension are used to pad the end,</span>
@@ -651,7 +651,7 @@ <h1>Source code for torch.nn.modules.padding</h1><div class="highlight"><pre>
651651
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">4</span> <span class="ow">and</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">!=</span> <span class="mi">5</span><span class="p">:</span>
652652
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
653653
<span class="sa">f</span><span class="s2">&quot;expected 4D or 5D input (got </span><span class="si">{</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span><span class="si">}</span><span class="s2">D input)&quot;</span>
654-
<span class="p">)</span>
654+
<span class="p">)</span></div>
655655

656656

657657
<span class="k">class</span> <span class="nc">_ConstantPadNd</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>

0 commit comments

Comments
 (0)