|
| 1 | +import os |
| 2 | +import streamlit as st |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | +from sklearn.model_selection import train_test_split |
| 6 | +from sklearn.preprocessing import StandardScaler, OneHotEncoder |
| 7 | +from sklearn.compose import ColumnTransformer |
| 8 | +from sklearn.pipeline import Pipeline |
| 9 | +from sklearn.ensemble import RandomForestClassifier |
| 10 | +from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix, roc_curve, auc |
| 11 | +import matplotlib.pyplot as plt |
| 12 | +import seaborn as sns |
| 13 | + |
| 14 | +# Define the path to the data file |
| 15 | +file_path = 'survey_results_sample_2018.csv' |
| 16 | + |
| 17 | +# Check if the file exists |
| 18 | +if not os.path.exists(file_path): |
| 19 | + st.error(f"File not found: {file_path}. Please ensure the file is in the correct directory.") |
| 20 | +else: |
| 21 | + # Load the dataset |
| 22 | + data = pd.read_csv(file_path) |
| 23 | + |
| 24 | + # Define the necessary columns |
| 25 | + columns = ['Employment', 'FormalEducation', 'CompanySize', 'DevType', 'Exercise', 'Age', 'OpenSource'] |
| 26 | + data = data[columns].copy() |
| 27 | + |
| 28 | + # Map age values to numerical values |
| 29 | + age_mapping = { |
| 30 | + 'Under 18 years old': 0, |
| 31 | + '18 - 24 years old': 1, |
| 32 | + '25 - 34 years old': 2, |
| 33 | + '35 - 44 years old': 3, |
| 34 | + '45 - 54 years old': 4, |
| 35 | + '55 - 64 years old': 5, |
| 36 | + '65 years or older': 6 |
| 37 | + } |
| 38 | + data['Age'] = data['Age'].map(age_mapping) |
| 39 | + |
| 40 | + # Define target variable and feature columns |
| 41 | + target_variable = 'OpenSource' |
| 42 | + categorical_features = ['Employment', 'FormalEducation', 'CompanySize', 'DevType', 'Exercise', 'Age'] |
| 43 | + numerical_features = [] |
| 44 | + |
| 45 | + # Preprocessing for categorical data |
| 46 | + preprocessor = ColumnTransformer( |
| 47 | + transformers=[ |
| 48 | + ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_features) |
| 49 | + ] |
| 50 | + ) |
| 51 | + |
| 52 | + # Split the data |
| 53 | + X = data.drop(target_variable, axis=1) |
| 54 | + y = data[target_variable] |
| 55 | + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
| 56 | + |
| 57 | + # Create and train the model |
| 58 | + model = Pipeline(steps=[ |
| 59 | + ('preprocessor', preprocessor), |
| 60 | + ('classifier', RandomForestClassifier(random_state=42)) |
| 61 | + ]) |
| 62 | + model.fit(X_train, y_train) |
| 63 | + |
| 64 | + # Evaluate the model |
| 65 | + y_pred = model.predict(X_test) |
| 66 | + classification_rep = classification_report(y_test, y_pred) |
| 67 | + roc_auc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]) |
| 68 | + |
| 69 | + # Get feature importance |
| 70 | + importances = model.named_steps['classifier'].feature_importances_ |
| 71 | + feature_names = list(model.named_steps['preprocessor'].transformers_[0][1].get_feature_names_out()) |
| 72 | + feature_importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importances}).sort_values(by='Importance', ascending=False) |
| 73 | + |
| 74 | + # Streamlit App |
| 75 | + st.title('Machine Learning Model Evaluation') |
| 76 | + |
| 77 | + # Show classification report |
| 78 | + st.header('Classification Report') |
| 79 | + st.text(classification_rep) |
| 80 | + |
| 81 | + # Show ROC-AUC Score |
| 82 | + st.header('ROC-AUC Score') |
| 83 | + st.text(f"ROC-AUC Score: {roc_auc:.2f}") |
| 84 | + |
| 85 | + # Plot confusion matrix |
| 86 | + st.header('Confusion Matrix') |
| 87 | + cm = confusion_matrix(y_test, y_pred) |
| 88 | + fig, ax = plt.subplots() |
| 89 | + sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['No', 'Yes'], yticklabels=['No', 'Yes'], ax=ax) |
| 90 | + plt.xlabel('Predicted') |
| 91 | + plt.ylabel('Actual') |
| 92 | + st.pyplot(fig) |
| 93 | + |
| 94 | + # Plot ROC Curve |
| 95 | + st.header('ROC Curve') |
| 96 | + y_test_binary = y_test.map({'No': 0, 'Yes': 1}) |
| 97 | + fpr, tpr, _ = roc_curve(y_test_binary, model.predict_proba(X_test)[:, 1]) |
| 98 | + roc_auc = auc(fpr, tpr) |
| 99 | + fig, ax = plt.subplots() |
| 100 | + ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') |
| 101 | + ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
| 102 | + ax.set_xlim([0.0, 1.0]) |
| 103 | + ax.set_ylim([0.0, 1.05]) |
| 104 | + ax.set_xlabel('False Positive Rate') |
| 105 | + ax.set_ylabel('True Positive Rate') |
| 106 | + ax.set_title('ROC Curve') |
| 107 | + ax.legend(loc='lower right') |
| 108 | + st.pyplot(fig) |
| 109 | + |
| 110 | + # Plot feature importance |
| 111 | + st.header('Feature Importance') |
| 112 | + fig, ax = plt.subplots() |
| 113 | + sns.barplot(x='Importance', y='Feature', data=feature_importance_df.head(20), palette='viridis', ax=ax) |
| 114 | + ax.set_title('Top Feature Importances') |
| 115 | + ax.set_xlabel('Importance') |
| 116 | + ax.set_ylabel('Feature') |
| 117 | + st.pyplot(fig) |
| 118 | + |
| 119 | + # Section for new data input and prediction |
| 120 | + st.header('Predict for New Data') |
| 121 | + |
| 122 | + # Input fields for new data |
| 123 | + employment = st.selectbox('Employment', data['Employment'].unique()) |
| 124 | + education = st.selectbox('Formal Education', data['FormalEducation'].unique()) |
| 125 | + company_size = st.selectbox('Company Size', data['CompanySize'].unique()) |
| 126 | + dev_type = st.selectbox('Dev Type', data['DevType'].unique()) |
| 127 | + exercise = st.selectbox('Exercise', data['Exercise'].unique()) |
| 128 | + age = st.selectbox('Age', list(age_mapping.keys())) |
| 129 | + |
| 130 | + # Convert inputs to dataframe |
| 131 | + new_data = pd.DataFrame({ |
| 132 | + 'Employment': [employment], |
| 133 | + 'FormalEducation': [education], |
| 134 | + 'CompanySize': [company_size], |
| 135 | + 'DevType': [dev_type], |
| 136 | + 'Exercise': [exercise], |
| 137 | + 'Age': [age_mapping[age]] |
| 138 | + }) |
| 139 | + |
| 140 | + # Handle any NaN values |
| 141 | + new_data = new_data.fillna('') |
| 142 | + |
| 143 | + # Predict the output for new data |
| 144 | + if st.button('Predict'): |
| 145 | + try: |
| 146 | + prediction = model.predict(new_data) |
| 147 | + prediction_prob = model.predict_proba(new_data)[:, 1] |
| 148 | + st.write(f'Prediction: {"Yes" if prediction[0] == "Yes" else "No"}') |
| 149 | + st.write(f'Prediction Probability: {prediction_prob[0]:.2f}') |
| 150 | + except Exception as e: |
| 151 | + st.error(f"An error occurred during prediction: {e}") |
0 commit comments