|
| 1 | +Combining priority axioms |
| 2 | +========================= |
| 3 | + |
| 4 | +Background |
| 5 | +---------- |
| 6 | + |
| 7 | +If we have this chain of axioms: `α₁(X₁)⇒β₁(X₁)` … `αₙ(Xₙ)⇒βₙ(Xₙ)` in which |
| 8 | +all the LHS are *function-like* and *injection-based*, and all the RHS |
| 9 | +except `βₙ(Xₙ)` are *function-like*, then their combined transition is |
| 10 | + |
| 11 | +``` |
| 12 | +(⌈β₁(X₁)∧α₂(X₂)⌉ ∧ ⌈β₂(X₂)∧α₃(X₃)⌉ ∧ … ∧ ⌈βₙ₋₁(Xₙ₋₁)∧αₙ(Xₙ)⌉ ∧ α₁(X₁)) → ••…•βₙ(Xₙ) |
| 13 | +``` |
| 14 | + |
| 15 | +Also see the [Combining Rewrite Axioms](2019-09-09-Combining-Rewrite-Axioms.md) |
| 16 | +document. |
| 17 | + |
| 18 | +Priorities allow writing case-based `K` code that closer resembles functional |
| 19 | +languages, i.e. it allows saying things like "Apply this rule first, |
| 20 | +if that doesn't work try this other one, if that also doesn't work try |
| 21 | +this, and so on". The `owise` attribute is a special case of this. |
| 22 | + |
| 23 | +For a rule `φ(X) ⇒ ψ(X) requires P(X) [priority p]` we take the all |
| 24 | +rules at previous priorities: |
| 25 | +``` |
| 26 | +φ₁(X) ⇒ ψ₁(X) requires P₁(X) |
| 27 | +... |
| 28 | +φn(X) ⇒ ψn(X) requires Pn(X) |
| 29 | +``` |
| 30 | +and we encode the rule as: |
| 31 | +``` |
| 32 | + φ(X) ∧ P(X) |
| 33 | + ∧ ¬ (∃ X₁ . φ₁(X₁) ∧ P₁(X₁)) |
| 34 | + ... |
| 35 | + ∧ ¬ (∃ Xn . φn(Xn) ∧ Pn(Xn)) |
| 36 | + ⇒ ψ(X) |
| 37 | +``` |
| 38 | + |
| 39 | +Also see the [Rewrite Rule Priorities](2020-06-22-Rewrite-Rule-Priorities.md) |
| 40 | +document. |
| 41 | + |
| 42 | +Applying the rules |
| 43 | +------------------ |
| 44 | + |
| 45 | +We will examine how to compute `⌈β(X₁)∧α(X₂)⌉` where `β(X₁)` is the right |
| 46 | +hand side of a random rewrite rule and `α(X₂)` is the left hand sight of |
| 47 | +priority rewrite rule. |
| 48 | + |
| 49 | +``` |
| 50 | +⌈β(X₁)∧α(X₂)⌉ |
| 51 | += ⌈ β(X₁) ∧ φ(X) ∧ P(X) |
| 52 | + ∧ ¬ (∃ X₁ . φ₁(X₁) ∧ P₁(X₁)) |
| 53 | + ... |
| 54 | + ∧ ¬ (∃ Xn . φn(Xn) ∧ Pn(Xn)) |
| 55 | + ⌉ |
| 56 | +// If β(X₁) is functional then β(X₁)∧ φ(X) = β(X₁) ∧ ⌈β(X₁)∧ φ(X)⌉ |
| 57 | += ⌈ β(X₁) ∧ ⌈β(X₁)∧ φ(X)⌉ ∧ P(X) |
| 58 | + ∧ ¬ (∃ X₁ . φ₁(X₁) ∧ P₁(X₁)) |
| 59 | + ... |
| 60 | + ∧ ¬ (∃ Xn . φn(Xn) ∧ Pn(Xn)) |
| 61 | + ⌉ |
| 62 | +// If P is a predicate then ⌈φ∧P⌉=⌈φ⌉∧P |
| 63 | += ⌈ β(X₁) |
| 64 | + ∧ ¬ (∃ X₁ . φ₁(X₁) ∧ P₁(X₁)) |
| 65 | + ... |
| 66 | + ∧ ¬ (∃ Xn . φn(Xn) ∧ Pn(Xn)) |
| 67 | + ⌉ |
| 68 | + ∧ ⌈β(X₁) ∧ φ(X)⌉ ∧ P(X) |
| 69 | +// φ(X) ∧ (¬ ∃ Z. α(Z)) = φ(X) ∧ (¬ ∃ Z. ⌈φ(X) ∧ α(Z)⌉) |
| 70 | +// See the Justification section in |
| 71 | +// 2018-11-08-Configuration-Splitting-Simplification.md |
| 72 | += ⌈β(X₁) |
| 73 | + ∧ ¬ (∃ X₁ . ⌈ β(X₁) ∧ φ₁(X₁) ∧ P₁(X₁) ⌉) |
| 74 | + ... |
| 75 | + ∧ ¬ (∃ Xn . ⌈ β(X₁) ∧ φn(Xn) ∧ Pn(Xn) ⌉) |
| 76 | + ⌉ |
| 77 | + ∧ ⌈β(X₁) ∧ φ(X)⌉ ∧ P(X) |
| 78 | +// If P is a predicate then ⌈φ∧P⌉=⌈φ⌉∧P |
| 79 | += ⌈β(X₁) |
| 80 | + ∧ ¬ (∃ X₁ . ⌈ β(X₁) ∧ φ₁(X₁) ⌉ ∧ P₁(X₁)) |
| 81 | + ... |
| 82 | + ∧ ¬ (∃ Xn . ⌈ β(X₁) ∧ φn(Xn) ⌉ ∧ Pn(Xn)) |
| 83 | + ⌉ |
| 84 | + ∧ ⌈β(X₁) ∧ φ(X)⌉ ∧ P(X) |
| 85 | +// If P is a predicate then ∃ X . P is a predicate |
| 86 | +// If P is a predicate then ⌈φ∧P⌉=⌈φ⌉∧P |
| 87 | += ⌈β(X₁)⌉ |
| 88 | + ∧ ¬ (∃ X₁ . ⌈ β(X₁) ∧ φ₁(X₁) ⌉ ∧ P₁(X₁)) |
| 89 | + ... |
| 90 | + ∧ ¬ (∃ Xn . ⌈ β(X₁) ∧ φn(Xn) ⌉ ∧ Pn(Xn)) |
| 91 | + ∧ ⌈β(X₁) ∧ φ(X)⌉ ∧ P(X) |
| 92 | +// ⌈t⌉ ∧ ⌈ t ∧ s ⌉ = ⌈ t ∧ s ⌉ |
| 93 | += ⌈β(X₁) ∧ φ(X)⌉ ∧ P(X) |
| 94 | + ∧ ¬ (∃ X₁ . ⌈ β(X₁) ∧ φ₁(X₁) ⌉ ∧ P₁(X₁)) |
| 95 | + ... |
| 96 | + ∧ ¬ (∃ Xn . ⌈ β(X₁) ∧ φn(Xn) ⌉ ∧ Pn(Xn)) |
| 97 | +``` |
| 98 | + |
| 99 | +Usually, at least some of the existential clauses should disappear, because |
| 100 | +unification, i.e. the `⌈ β(Xi) ∧ φi(Xi) ⌉` part, will probably either succeed |
| 101 | +with a full substitution, or will fail. Of course, since we are using symbolic |
| 102 | +inputs, this is not guaranteed. |
0 commit comments