|
12 | 12 |
|
13 | 13 | use default::Default;
|
14 | 14 | use intrinsics;
|
15 |
| -use num::{Zero, One, Bounded, Signed, Num, Primitive}; |
| 15 | +use mem; |
| 16 | +use num::{FPNormal, FPCategory, FPZero, FPSubnormal, FPInfinite, FPNaN}; |
| 17 | +use num::{Zero, One, Bounded, Signed, Num, Primitive, Float}; |
| 18 | +use option::Option; |
16 | 19 |
|
17 | 20 | #[cfg(not(test))] use cmp::{Eq, Ord};
|
18 | 21 | #[cfg(not(test))] use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
@@ -225,3 +228,270 @@ impl Bounded for f32 {
|
225 | 228 | #[inline]
|
226 | 229 | fn max_value() -> f32 { MAX_VALUE }
|
227 | 230 | }
|
| 231 | + |
| 232 | +impl Float for f32 { |
| 233 | + #[inline] |
| 234 | + fn nan() -> f32 { NAN } |
| 235 | + |
| 236 | + #[inline] |
| 237 | + fn infinity() -> f32 { INFINITY } |
| 238 | + |
| 239 | + #[inline] |
| 240 | + fn neg_infinity() -> f32 { NEG_INFINITY } |
| 241 | + |
| 242 | + #[inline] |
| 243 | + fn neg_zero() -> f32 { -0.0 } |
| 244 | + |
| 245 | + /// Returns `true` if the number is NaN |
| 246 | + #[inline] |
| 247 | + fn is_nan(self) -> bool { self != self } |
| 248 | + |
| 249 | + /// Returns `true` if the number is infinite |
| 250 | + #[inline] |
| 251 | + fn is_infinite(self) -> bool { |
| 252 | + self == Float::infinity() || self == Float::neg_infinity() |
| 253 | + } |
| 254 | + |
| 255 | + /// Returns `true` if the number is neither infinite or NaN |
| 256 | + #[inline] |
| 257 | + fn is_finite(self) -> bool { |
| 258 | + !(self.is_nan() || self.is_infinite()) |
| 259 | + } |
| 260 | + |
| 261 | + /// Returns `true` if the number is neither zero, infinite, subnormal or NaN |
| 262 | + #[inline] |
| 263 | + fn is_normal(self) -> bool { |
| 264 | + self.classify() == FPNormal |
| 265 | + } |
| 266 | + |
| 267 | + /// Returns the floating point category of the number. If only one property |
| 268 | + /// is going to be tested, it is generally faster to use the specific |
| 269 | + /// predicate instead. |
| 270 | + fn classify(self) -> FPCategory { |
| 271 | + static EXP_MASK: u32 = 0x7f800000; |
| 272 | + static MAN_MASK: u32 = 0x007fffff; |
| 273 | + |
| 274 | + let bits: u32 = unsafe { mem::transmute(self) }; |
| 275 | + match (bits & MAN_MASK, bits & EXP_MASK) { |
| 276 | + (0, 0) => FPZero, |
| 277 | + (_, 0) => FPSubnormal, |
| 278 | + (0, EXP_MASK) => FPInfinite, |
| 279 | + (_, EXP_MASK) => FPNaN, |
| 280 | + _ => FPNormal, |
| 281 | + } |
| 282 | + } |
| 283 | + |
| 284 | + #[inline] |
| 285 | + fn mantissa_digits(_: Option<f32>) -> uint { MANTISSA_DIGITS } |
| 286 | + |
| 287 | + #[inline] |
| 288 | + fn digits(_: Option<f32>) -> uint { DIGITS } |
| 289 | + |
| 290 | + #[inline] |
| 291 | + fn epsilon() -> f32 { EPSILON } |
| 292 | + |
| 293 | + #[inline] |
| 294 | + fn min_exp(_: Option<f32>) -> int { MIN_EXP } |
| 295 | + |
| 296 | + #[inline] |
| 297 | + fn max_exp(_: Option<f32>) -> int { MAX_EXP } |
| 298 | + |
| 299 | + #[inline] |
| 300 | + fn min_10_exp(_: Option<f32>) -> int { MIN_10_EXP } |
| 301 | + |
| 302 | + #[inline] |
| 303 | + fn max_10_exp(_: Option<f32>) -> int { MAX_10_EXP } |
| 304 | + |
| 305 | + #[inline] |
| 306 | + fn min_pos_value(_: Option<f32>) -> f32 { MIN_POS_VALUE } |
| 307 | + |
| 308 | + /// Returns the mantissa, exponent and sign as integers. |
| 309 | + fn integer_decode(self) -> (u64, i16, i8) { |
| 310 | + let bits: u32 = unsafe { mem::transmute(self) }; |
| 311 | + let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; |
| 312 | + let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; |
| 313 | + let mantissa = if exponent == 0 { |
| 314 | + (bits & 0x7fffff) << 1 |
| 315 | + } else { |
| 316 | + (bits & 0x7fffff) | 0x800000 |
| 317 | + }; |
| 318 | + // Exponent bias + mantissa shift |
| 319 | + exponent -= 127 + 23; |
| 320 | + (mantissa as u64, exponent, sign) |
| 321 | + } |
| 322 | + |
| 323 | + /// Round half-way cases toward `NEG_INFINITY` |
| 324 | + #[inline] |
| 325 | + fn floor(self) -> f32 { |
| 326 | + unsafe { intrinsics::floorf32(self) } |
| 327 | + } |
| 328 | + |
| 329 | + /// Round half-way cases toward `INFINITY` |
| 330 | + #[inline] |
| 331 | + fn ceil(self) -> f32 { |
| 332 | + unsafe { intrinsics::ceilf32(self) } |
| 333 | + } |
| 334 | + |
| 335 | + /// Round half-way cases away from `0.0` |
| 336 | + #[inline] |
| 337 | + fn round(self) -> f32 { |
| 338 | + unsafe { intrinsics::roundf32(self) } |
| 339 | + } |
| 340 | + |
| 341 | + /// The integer part of the number (rounds towards `0.0`) |
| 342 | + #[inline] |
| 343 | + fn trunc(self) -> f32 { |
| 344 | + unsafe { intrinsics::truncf32(self) } |
| 345 | + } |
| 346 | + |
| 347 | + /// The fractional part of the number, satisfying: |
| 348 | + /// |
| 349 | + /// ```rust |
| 350 | + /// let x = 1.65f32; |
| 351 | + /// assert!(x == x.trunc() + x.fract()) |
| 352 | + /// ``` |
| 353 | + #[inline] |
| 354 | + fn fract(self) -> f32 { self - self.trunc() } |
| 355 | + |
| 356 | + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| 357 | + /// error. This produces a more accurate result with better performance than |
| 358 | + /// a separate multiplication operation followed by an add. |
| 359 | + #[inline] |
| 360 | + fn mul_add(self, a: f32, b: f32) -> f32 { |
| 361 | + unsafe { intrinsics::fmaf32(self, a, b) } |
| 362 | + } |
| 363 | + |
| 364 | + /// The reciprocal (multiplicative inverse) of the number |
| 365 | + #[inline] |
| 366 | + fn recip(self) -> f32 { 1.0 / self } |
| 367 | + |
| 368 | + fn powi(self, n: i32) -> f32 { |
| 369 | + unsafe { intrinsics::powif32(self, n) } |
| 370 | + } |
| 371 | + |
| 372 | + #[inline] |
| 373 | + fn powf(self, n: f32) -> f32 { |
| 374 | + unsafe { intrinsics::powf32(self, n) } |
| 375 | + } |
| 376 | + |
| 377 | + /// sqrt(2.0) |
| 378 | + #[inline] |
| 379 | + fn sqrt2() -> f32 { consts::SQRT2 } |
| 380 | + |
| 381 | + /// 1.0 / sqrt(2.0) |
| 382 | + #[inline] |
| 383 | + fn frac_1_sqrt2() -> f32 { consts::FRAC_1_SQRT2 } |
| 384 | + |
| 385 | + #[inline] |
| 386 | + fn sqrt(self) -> f32 { |
| 387 | + unsafe { intrinsics::sqrtf32(self) } |
| 388 | + } |
| 389 | + |
| 390 | + #[inline] |
| 391 | + fn rsqrt(self) -> f32 { self.sqrt().recip() } |
| 392 | + |
| 393 | + /// Archimedes' constant |
| 394 | + #[inline] |
| 395 | + fn pi() -> f32 { consts::PI } |
| 396 | + |
| 397 | + /// 2.0 * pi |
| 398 | + #[inline] |
| 399 | + fn two_pi() -> f32 { consts::PI_2 } |
| 400 | + |
| 401 | + /// pi / 2.0 |
| 402 | + #[inline] |
| 403 | + fn frac_pi_2() -> f32 { consts::FRAC_PI_2 } |
| 404 | + |
| 405 | + /// pi / 3.0 |
| 406 | + #[inline] |
| 407 | + fn frac_pi_3() -> f32 { consts::FRAC_PI_3 } |
| 408 | + |
| 409 | + /// pi / 4.0 |
| 410 | + #[inline] |
| 411 | + fn frac_pi_4() -> f32 { consts::FRAC_PI_4 } |
| 412 | + |
| 413 | + /// pi / 6.0 |
| 414 | + #[inline] |
| 415 | + fn frac_pi_6() -> f32 { consts::FRAC_PI_6 } |
| 416 | + |
| 417 | + /// pi / 8.0 |
| 418 | + #[inline] |
| 419 | + fn frac_pi_8() -> f32 { consts::FRAC_PI_8 } |
| 420 | + |
| 421 | + /// 1 .0/ pi |
| 422 | + #[inline] |
| 423 | + fn frac_1_pi() -> f32 { consts::FRAC_1_PI } |
| 424 | + |
| 425 | + /// 2.0 / pi |
| 426 | + #[inline] |
| 427 | + fn frac_2_pi() -> f32 { consts::FRAC_2_PI } |
| 428 | + |
| 429 | + /// 2.0 / sqrt(pi) |
| 430 | + #[inline] |
| 431 | + fn frac_2_sqrtpi() -> f32 { consts::FRAC_2_SQRTPI } |
| 432 | + |
| 433 | + /// Euler's number |
| 434 | + #[inline] |
| 435 | + fn e() -> f32 { consts::E } |
| 436 | + |
| 437 | + /// log2(e) |
| 438 | + #[inline] |
| 439 | + fn log2_e() -> f32 { consts::LOG2_E } |
| 440 | + |
| 441 | + /// log10(e) |
| 442 | + #[inline] |
| 443 | + fn log10_e() -> f32 { consts::LOG10_E } |
| 444 | + |
| 445 | + /// ln(2.0) |
| 446 | + #[inline] |
| 447 | + fn ln_2() -> f32 { consts::LN_2 } |
| 448 | + |
| 449 | + /// ln(10.0) |
| 450 | + #[inline] |
| 451 | + fn ln_10() -> f32 { consts::LN_10 } |
| 452 | + |
| 453 | + /// Returns the exponential of the number |
| 454 | + #[inline] |
| 455 | + fn exp(self) -> f32 { |
| 456 | + unsafe { intrinsics::expf32(self) } |
| 457 | + } |
| 458 | + |
| 459 | + /// Returns 2 raised to the power of the number |
| 460 | + #[inline] |
| 461 | + fn exp2(self) -> f32 { |
| 462 | + unsafe { intrinsics::exp2f32(self) } |
| 463 | + } |
| 464 | + |
| 465 | + /// Returns the natural logarithm of the number |
| 466 | + #[inline] |
| 467 | + fn ln(self) -> f32 { |
| 468 | + unsafe { intrinsics::logf32(self) } |
| 469 | + } |
| 470 | + |
| 471 | + /// Returns the logarithm of the number with respect to an arbitrary base |
| 472 | + #[inline] |
| 473 | + fn log(self, base: f32) -> f32 { self.ln() / base.ln() } |
| 474 | + |
| 475 | + /// Returns the base 2 logarithm of the number |
| 476 | + #[inline] |
| 477 | + fn log2(self) -> f32 { |
| 478 | + unsafe { intrinsics::log2f32(self) } |
| 479 | + } |
| 480 | + |
| 481 | + /// Returns the base 10 logarithm of the number |
| 482 | + #[inline] |
| 483 | + fn log10(self) -> f32 { |
| 484 | + unsafe { intrinsics::log10f32(self) } |
| 485 | + } |
| 486 | + |
| 487 | + /// Converts to degrees, assuming the number is in radians |
| 488 | + #[inline] |
| 489 | + fn to_degrees(self) -> f32 { self * (180.0f32 / Float::pi()) } |
| 490 | + |
| 491 | + /// Converts to radians, assuming the number is in degrees |
| 492 | + #[inline] |
| 493 | + fn to_radians(self) -> f32 { |
| 494 | + let value: f32 = Float::pi(); |
| 495 | + self * (value / 180.0f32) |
| 496 | + } |
| 497 | +} |
0 commit comments