Skip to content

Commit 35daad9

Browse files
authored
Update index.md
1 parent d305806 commit 35daad9

File tree

1 file changed

+20
-33
lines changed

1 file changed

+20
-33
lines changed

docs/index.md

Lines changed: 20 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -227,40 +227,27 @@ from math import pi, sin, cos, sqrt
227227

228228
**_Scientists Annotated Background:_**
229229
Source: Haldane, F. D. M. (1988). Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the" parity anomaly". Physical review letters, 61(18).
230-
We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
231-
\[
232-
\begin{aligned}
233-
\mathbf{a}_1 &= (0,a), \\
234-
\mathbf{a}_2 &= \left(\frac{\sqrt{3}a}{2}, -\frac{a}{2}\right), \\
235-
\mathbf{a}_3 &= \left(-\frac{\sqrt{3}a}{2}, -\frac{a}{2}\right)
236-
\end{aligned}
237-
\]
238-
\[
239-
\begin{aligned}
240-
\mathbf{b}_1 &= \mathbf{a}_2 - \mathbf{a}_3 = (\sqrt{3}a,0), \\
241-
\mathbf{b}_2 &= \mathbf{a}_3 - \mathbf{a}_1 = \left(-\frac{\sqrt{3}a}{2}, -\frac{3a}{2}\right), \\
242-
\mathbf{b}_3 &= \mathbf{a}_1 - \mathbf{a}_2 = \left(-\frac{\sqrt{3}a}{2},\frac{3a}{2}\right)
243-
\end{aligned}
244-
\]
245-
\\
230+
231+
We denote $\{\mathbf{a}_i\}$ are the vectors from a B site to its three nearest-neighbor A sites, and $\{\mathbf{b}_i\}$ are next-nearest-neighbor distance vectors, then we have
232+
$$
233+
{\mathbf{a}_1} = (0,a),\\
234+
{\mathbf{a}_2} = (\sqrt 3 a/2, - a/2),\\
235+
{\mathbf{a}_3} = ( - \sqrt 3 a/2, - a/2)\\
236+
{\mathbf{b}_1} = {\mathbf{a}_2} - {\mathbf{a}_3} = (\sqrt 3 a,0),\\
237+
{\mathbf{b}_2} = {\mathbf{a}_3} - {\mathbf{a}_1} = ( - \sqrt 3 a/2, - 3a/2),\\
238+
{\mathbf{b}_3} = {\mathbf{a}_1} - {\mathbf{a}_2} = ( - \sqrt 3 a/2,3a/2)
239+
$$
240+
246241
Then the Haldane model on a hexagonal lattice can be written as
247-
\[
248-
H(k) = d_0 I + d_1 \sigma_1 + d_2 \sigma_2 + d_3 \sigma_3
249-
\]
250-
\[
251-
\begin{aligned}
252-
d_0 &= 2 t_2 \cos \phi \sum_i \cos (\mathbf{k} \cdot \mathbf{b}_i) \\
253-
&= 2 t_2 \cos \phi \left[ \cos \left( \sqrt{3} k_x a \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} + \frac{3 k_y a}{2} \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} - \frac{3 k_y a}{2} \right) \right] \\
254-
d_1 &= t_1 \sum_i \cos (\mathbf{k} \cdot \mathbf{a}_i) \\
255-
&= t_1 \left[ \cos \left( k_y a \right) + \cos \left( \frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) + \cos \left( -\frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) \right] \\
256-
d_2 &= t_1 \sum_i \sin (\mathbf{k} \cdot \mathbf{a}_i) \\
257-
&= t_1 \left[ \sin \left( k_y a \right) + \sin \left( \frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} - \frac{k_y a}{2} \right) \right] \\
258-
d_3 &= m - 2 t_2 \sin \phi \sum_i \sin (\mathbf{k} \cdot \mathbf{b}_i) \\
259-
&= m - 2 t_2 \sin \phi \left[ \sin \left( \sqrt{3} k_x a \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} + \frac{3 k_y a}{2} \right) + \sin \left( -\frac{\sqrt{3} k_x a}{2} - \frac{3 k_y a}{2} \right) \right]
260-
\end{aligned}
261-
\]
262-
\\
263-
where $\sigma_i$ are the Pauli matrices and $I$ is the identity matrix. \\
242+
$$H(k) = {d_0}I + {d_1}{\sigma _1} + {d_2}{\sigma _2} + {d_3}{\sigma _3}$$
243+
$${d_0} = 2{t_2}\cos \phi \sum\nolimits_i {\cos (\mathbf{k} \cdot {\mathbf{b}_i})} = 2{t_2}\cos \phi \left[ {\cos \left( {\sqrt 3 {k_x}a} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 + 3{k_y}a/2} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 - 3{k_y}a/2} \right)} \right]$$
244+
$$
245+
{d_1} = {t_1}\sum\nolimits_i {\cos (\mathbf{k} \cdot {\mathbf{a}_i})} = {t_1}\left[ {\cos \left( {{k_y}a} \right) + \cos \left( {\sqrt 3 {k_x}a/2 - {k_y}a/2} \right) + \cos \left( { - \sqrt 3 {k_x}a/2 - {k_y}a/2} \right)} \right]\\
246+
{d_2} = {t_1}\sum\nolimits_i {\sin (\mathbf{k} \cdot {\mathbf{a}_i})} = {t_1}\left[ {\sin \left( {{k_y}a} \right) + \sin \left( {\sqrt 3 {k_x}a/2 - {k_y}a/2} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 - {k_y}a/2} \right)} \right] \\
247+
{d_3} = m - 2{t_2}\sin \phi \sum\nolimits_i {\sin (\mathbf{k} \cdot {\mathbf{b}_i})} = m - 2{t_2}\sin \phi \left[ {\sin \left( {\sqrt 3 {k_x}a} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 + 3{k_y}a/2} \right) + \sin \left( { - \sqrt 3 {k_x}a/2 - 3{k_y}a/2} \right)} \right] \\
248+
$$
249+
250+
where $\sigma_i$ are the Pauli matrices and $I$ is the identity matrix.
264251
```python
265252
def calc_hamiltonian(kx, ky, a, t1, t2, phi, m):
266253
"""

0 commit comments

Comments
 (0)