|
1 |
| -# Obtaining the datasets |
| 1 | +# Spatial omics datasets |
2 | 2 |
|
3 | 3 | Here you can find all datasets necessary to run the example notebooks already converted to the ZARR file format.
|
4 | 4 |
|
5 | 5 | If you want to convert additional datasets check out the scripts available in the [spatialdata sandbox](https://github.com/giovp/spatialdata-sandbox).
|
6 | 6 |
|
7 |
| -| Technology | Sample | File Size | Filename | download data | work with data remotely [^1] | |
8 |
| -| :---------------------------------------- | :--------------------------------------------------- | --------: | :-------------------------- | :---------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------- | |
9 |
| -| NanoString CosMx | Non-small cell lung cancer [1] | 4.2 GB | cosmx_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/cosmx_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/cosmx_io.zarr/) | |
10 |
| -| Visium | Breast Cancer [2] | 1.5 GB | visium_associated_xenium_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/visium_associated_xenium_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/visium_associated_xenium_io.zarr/) | |
11 |
| -| Xenium | Breast Cancer [2] | 2.8 GB | xenium_rep1_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep1_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep1_io.zarr/) | |
12 |
| -| Xenium | Breast Cancer [2] | 3.7 GB | xenium_rep2_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep2_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep2_io.zarr/) | |
13 |
| -| CyCIF (MCMICRO output) | Small lung adenocarcinoma [3] | 250 MB | mcmicro_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/mcmicro_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/mcmicro_io.zarr/) | |
14 |
| -| MERFISH | Mouse Brain [4] | 50 MB | merfish | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/merfish.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/merfish.zarr/) | |
15 |
| -| MIBI-TOF | Colorectal carcinoma [5] | 25 MB | mibitof | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/mibitof.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/mibitof.zarr/) | |
16 |
| -| Imaging Mass Cytometry (Steinbock output) | 4 different cancers (SCCHN, BCC, NSCLC, CRC) [6,7,8] | 820 MB | steinbock_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/steinbock_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/steinbock_io.zarr/) | |
| 7 | +| Technology | Sample | File Size | Filename | download data | work with data remotely (**see note below**) | license | |
| 8 | +| :---------------------------------------- | :-------------------------------------------------------- | ------------------------------: | :-------------------------- | :---------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------- | :---------------------------------------------------------------------- | ----------------------------------- | |
| 9 | +| Visium | Breast Cancer [^2] | 1.5 GB | visium_associated_xenium_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/visium_associated_xenium_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/visium_associated_xenium_io.zarr/) | CCA | |
| 10 | +| Xenium | Breast Cancer [^2] | 2.8 GB | xenium_rep1_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep1_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep1_io.zarr/) | CCA | |
| 11 | +| Xenium | Breast Cancer [^2] | 3.7 GB | xenium_rep2_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep2_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/xenium_rep2_io.zarr/) | CCA | |
| 12 | +| CyCIF (MCMICRO output) | Small lung adenocarcinoma [^3] | 250 MB | mcmicro_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/mcmicro_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/mcmicro_io.zarr/) | CC BY-NC 4.0 DEED | |
| 13 | +| MERFISH | Mouse Brain [^4] | 50 MB | merfish | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/merfish.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/merfish.zarr/) | CC0 1.0 DEED | |
| 14 | +| MIBI-TOF | Colorectal carcinoma [^5] | 25 MB | mibitof | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/mibitof.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/mibitof.zarr/) | CC BY 4.0 DEED | |
| 15 | +| Imaging Mass Cytometry (Steinbock output) | 4 different cancers (SCCHN, BCC, NSCLC, CRC) [^6][^7][^8] | 820 MB | steinbock_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/steinbock_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/steinbock_io.zarr/) | CC BY 4.0 DEED | |
| 16 | +| <!-- | NanoString CosMx | Non-small cell lung cancer [^1] | 4.2 GB | cosmx_io | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/cosmx_io.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/cosmx_io.zarr/) | NanoString removed the dataset? --> | |
| 17 | + |
| 18 | +**Note on S3 storage:** opening the S3 URLs in a web browser will not work, you need to treat the URLs as Zarr stores. For example if you append `.zgroup` to any of the URLs above you will be able to see that file. |
| 19 | + |
| 20 | +## Licenses abbreviations |
| 21 | + |
| 22 | +- CCA: Creative Common Attribution |
| 23 | +- CC0 1.0 DEED: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication |
| 24 | +- CC BY 4.0 DEED: Creative Common Attribution 4.0 International |
| 25 | +- CC BY-NC 4.0 DEED: Creative Common Attribution-NonCommercial 4.0 International |
17 | 26 |
|
18 | 27 | <!-- to add: raccoon, blobs, "additional resources for methods developers" -->
|
19 | 28 | <!-- Artificial datasets
|
20 | 29 | | Description | File Size| Filename | download data | work with data remotely [^1] |
|
21 | 30 | | :--------------------- | :------------------------- | --------:| :-------------------------- | :---------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------- || - | - | 11 kB| toy | [.zarr.zip](https://s3.embl.de/spatialdata/spatialdata-sandbox/toy.zip) | [S3](https://s3.embl.de/spatialdata/spatialdata-sandbox/toy.zarr/) | -->
|
22 | 31 |
|
23 |
| -Also, here you can find [additional datasets and resources for methods developers](https://github.com/scverse/spatialdata-notebooks/blob/main/notebooks/developers_resources/storage_format/). |
| 32 | +# Artificial datasets |
24 | 33 |
|
25 |
| -[^1]: Opening the S3 URLs in a web browser will not work, you need to treat the URLs as Zarr stores. For example if you append `.zgroup` to any of the URLs above you will be able to see that file. |
| 34 | +Also, here you can find [additional datasets and resources for methods developers](https://github.com/scverse/spatialdata-notebooks/blob/main/notebooks/developers_resources/storage_format/). |
26 | 35 |
|
27 | 36 | # References
|
28 | 37 |
|
29 |
| -1. He, S. et al. High-Plex Multiomic Analysis in FFPE Tissue at Single-Cellular and Subcellular Resolution by Spatial Molecular Imaging. bioRxiv 2021.11.03.467020 (2021) doi:10.1101/2021.11.03.467020. |
30 |
| -2. Janesick, A. et al. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv 2022.10.06.510405 (2022) doi:10.1101/2022.10.06.510405. |
31 |
| -3. Schapiro, D. et al. MCMICRO: A scalable, modular image-processing pipeline for multiplexed tissue imaging. Cold Spring Harbor Laboratory 2021.03.15.435473 (2021) doi:10.1101/2021.03.15.435473. |
32 |
| -4. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, (2018). |
33 |
| -5. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0651-8. |
34 |
| -6. Windhager, J., Bodenmiller, B. & Eling, N. An end-to-end workflow for multiplexed image processing and analysis. bioRxiv 2021.11.12.468357 (2021) doi:10.1101/2021.11.12.468357. |
35 |
| -7. Eling, N. & Windhager, J. Example imaging mass cytometry raw data. (2022). doi:10.5281/zenodo.5949116. |
36 |
| -8. Eling, N. & Windhager, J. steinbock results of IMC example data. (2022). doi:10.5281/zenodo.7412972. |
| 38 | +Please .. |
| 39 | +[^1]: He, S. et al. High-Plex Multiomic Analysis in FFPE Tissue at Single-Cellular and Subcellular Resolution by Spatial Molecular Imaging. bioRxiv 2021.11.03.467020 (2021) doi:10.1101/2021.11.03.467020. |
| 40 | +[^2]: Janesick, A. et al. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv 2022.10.06.510405 (2022) doi:10.1101/2022.10.06.510405. |
| 41 | +[^3]: Schapiro, D. et al. MCMICRO: A scalable, modular image-processing pipeline for multiplexed tissue imaging. Cold Spring Harbor Laboratory 2021.03.15.435473 (2021) doi:10.1101/2021.03.15.435473. |
| 42 | +[^4]: Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, (2018). |
| 43 | +[^5]: Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. (2020) doi:10.1038/s41587-020-0651-8. |
| 44 | +[^6]: Windhager, J., Bodenmiller, B. & Eling, N. An end-to-end workflow for multiplexed image processing and analysis. bioRxiv 2021.11.12.468357 (2021) doi:10.1101/2021.11.12.468357. |
| 45 | +[^7]: Eling, N. & Windhager, J. Example imaging mass cytometry raw data. (2022). doi:10.5281/zenodo.5949116. |
| 46 | +[^8]: Eling, N. & Windhager, J. steinbock results of IMC example data. (2022). doi:10.5281/zenodo.7412972. |
0 commit comments