You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/ndarray/base/README.md
+6Lines changed: 6 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -155,6 +155,8 @@ var o = ns;
155
155
- <spanclass="signature">[`unaryLoopOrder( shape, stridesX, stridesY )`][@stdlib/ndarray/base/unary-loop-interchange-order]</span><spanclass="delimiter">: </span><spanclass="description">reorder ndarray dimensions and associated strides for loop interchange.</span>
156
156
- <spanclass="signature">[`unaryOutputDataType( dtype, policy )`][@stdlib/ndarray/base/unary-output-dtype]</span><spanclass="delimiter">: </span><spanclass="description">resolve the output ndarray data type for a unary function.</span>
157
157
- <spanclass="signature">[`unaryReduceStrided1dBy( fcn, arrays, dims[, options], clbk[, thisArg] )`][@stdlib/ndarray/base/unary-reduce-strided1d-by]</span><spanclass="delimiter">: </span><spanclass="description">perform a reduction over a list of specified dimensions in an input ndarray via a one-dimensional strided array reduction function accepting a callback and assign results to a provided output ndarray.</span>
158
+
- <spanclass="signature">[`unaryReduceStrided1dDispatchByFactory( table, idtypes, odtypes, policies )`][@stdlib/ndarray/base/unary-reduce-strided1d-dispatch-by-factory]</span><spanclass="delimiter">: </span><spanclass="description">create a function for performing a reduction on an input ndarray according to a callback function.</span>
159
+
- <spanclass="signature">[`unaryReduceStrided1dDispatchBy( table, idtypes, odtypes, policies )`][@stdlib/ndarray/base/unary-reduce-strided1d-dispatch-by]</span><spanclass="delimiter">: </span><spanclass="description">constructor for performing a reduction on an input ndarray according to a callback function.</span>
158
160
- <spanclass="signature">[`unaryReduceStrided1dDispatchFactory( table, idtypes, odtypes, policies )`][@stdlib/ndarray/base/unary-reduce-strided1d-dispatch-factory]</span><spanclass="delimiter">: </span><spanclass="description">create a function for performing a reduction on an input ndarray.</span>
159
161
- <spanclass="signature">[`unaryReduceStrided1dDispatch( table, idtypes, odtypes, policies )`][@stdlib/ndarray/base/unary-reduce-strided1d-dispatch]</span><spanclass="delimiter">: </span><spanclass="description">constructor for performing a reduction on an input ndarray.</span>
160
162
- <spanclass="signature">[`unaryReduceStrided1d( fcn, arrays, dims[, options] )`][@stdlib/ndarray/base/unary-reduce-strided1d]</span><spanclass="delimiter">: </span><spanclass="description">perform a reduction over a list of specified dimensions in an input ndarray via a one-dimensional strided array reduction function and assign results to a provided output ndarray.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/README.md
+3Lines changed: 3 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -113,6 +113,7 @@ Other statistical functions included are:
113
113
- <spanclass="signature">[`cumax( x[, options] )`][@stdlib/stats/cumax]</span><spanclass="delimiter">: </span><spanclass="description">compute the cumulative maximum value along one or more ndarray dimensions.</span>
114
114
- <spanclass="signature">[`kde2d()`][@stdlib/stats/kde2d]</span><spanclass="delimiter">: </span><spanclass="description">two-dimensional kernel density estimation.</span>
115
115
- <spanclass="signature">[`lowess( x, y[, opts] )`][@stdlib/stats/lowess]</span><spanclass="delimiter">: </span><spanclass="description">locally-weighted polynomial regression via the LOWESS algorithm.</span>
116
+
- <spanclass="signature">[`maxBy( x[, options], clbk[, thisArg] )`][@stdlib/stats/max-by]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value along one or more ndarray dimensions according to a callback function.</span>
116
117
- <spanclass="signature">[`max( x[, options] )`][@stdlib/stats/max]</span><spanclass="delimiter">: </span><spanclass="description">compute the maximum value along one or more ndarray dimensions.</span>
- <spanclass="signature">[`ranks( arr[, opts] )`][@stdlib/stats/ranks]</span><spanclass="delimiter">: </span><spanclass="description">compute ranks for values of an array-like object.</span>
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
-12Lines changed: 0 additions & 12 deletions
Original file line number
Diff line number
Diff line change
@@ -65,10 +65,6 @@ The namespace contains the following statistical functions:
65
65
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
66
66
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
67
67
- <spanclass="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
68
-
- <spanclass="signature">[`dnanmskmax( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskmax]</span><spanclass="delimiter">: </span><spanclass="description">calculate the maximum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
69
-
- <spanclass="signature">[`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskmin]</span><spanclass="delimiter">: </span><spanclass="description">calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
70
-
- <spanclass="signature">[`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/strided/dnanmskrange]</span><spanclass="delimiter">: </span><spanclass="description">calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.</span>
71
-
- <spanclass="signature">[`dnanstdev( N, correction, x, strideX )`][@stdlib/stats/strided/dnanstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values.</span>
72
68
- <spanclass="signature">[`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array.</span>
73
69
- <spanclass="signature">[`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm.</span>
74
70
- <spanclass="signature">[`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
0 commit comments